3 research outputs found

    A Multi-Producer Microbiome Creates Chemical Diversity in the Marine Sponge Mycale hentscheli

    No full text
    Rust M, Helfrich EJN, Freeman MF, et al. A Multi-Producer Microbiome Creates Chemical Diversity in the Marine Sponge Mycale hentscheli. In: MARINE DRUGS. Vol 18. Basel: Mdpi; 2020

    A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli.

    No full text
    Rust M, Helfrich EJN, Freeman MF, et al. A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli. Proceedings of the National Academy of Sciences of the United States of America. 2020;117(17):9508-9518.Bacterial specialized metabolites are increasingly recognized as important factors in animal-microbiome interactions: for example, by providing the host with chemical defenses. Even in chemically rich animals, such compounds have been found to originate from individual members of more diverse microbiomes. Here, we identified a remarkable case of a moderately complex microbiome in the sponge host Mycale hentscheli in which multiple symbionts jointly generate chemical diversity. In addition to bacterial pathways for three distinct polyketide families comprising microtubule-inhibiting peloruside drug candidates, mycalamide-type contact poisons, and the eukaryotic translation-inhibiting pateamines, we identified extensive biosynthetic potential distributed among a broad phylogenetic range of bacteria. Biochemical data on one of the orphan pathways suggest a previously unknown member of the rare polytheonamide-type cytotoxin family as its product. Other than supporting a scenario of cooperative symbiosis based on bacterial metabolites, the data provide a rationale for the chemical variability of M. hentscheli and could pave the way toward biotechnological peloruside production. Most bacterial lineages in the compositionally unusual sponge microbiome were not known to synthesize bioactive metabolites, supporting the concept that microbial dark matter harbors diverse producer taxa with as yet unrecognized drug discovery potential. Copyright © 2020 the Author(s). Published by PNAS

    A microbiome-dependent gut-brain pathway regulates motivation for exercise.

    No full text
    Exercise exerts a wide range of beneficial effects for healthy physiology. However, the mechanisms regulating an individual’s motivation to engage in physical activity remain incompletely understood. An important factor stimulating the engagement in both competitive and recreational exercise is the motivating pleasure derived from prolonged physical activity, which is triggered by exercise-induced neurochemical changes in the brain. Here, we report on the discovery of a gut–brain connection in mice that enhances exercise performance by augmenting dopamine signalling during physical activity. We find that microbiome-dependent production of endocannabinoid metabolites in the gut stimulates the activity of TRPV1-expressing sensory neurons and thereby elevates dopamine levels in the ventral striatum during exercise. Stimulation of this pathway improves running performance, whereas microbiome depletion, peripheral endocannabinoid receptor inhibition, ablation of spinal afferent neurons or dopamine blockade abrogate exercise capacity. These findings indicate that the rewarding properties of exercise are influenced by gut-derived interoceptive circuits and provide a microbiome-dependent explanation for interindividual variability in exercise performance. Our study also suggests that interoceptomimetic molecules that stimulate the transmission of gut-derived signals to the brain may enhance the motivation for exercise
    corecore