216 research outputs found
Galaxy Merger Candidates in High-Redshift Cluster Environments
We compile a sample of spectroscopically- and photometrically-selected
cluster galaxies from four high-redshift galaxy clusters ()
from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS), and a
comparison field sample selected from the UKIDSS Deep Survey. Using
near-infrared imaging from the \textit{Hubble Space Telescope} we classify
potential mergers involving massive () cluster members by eye, based on morphological
properties such as tidal distortions, double nuclei, and projected near
neighbors within 20 kpc. With a catalogue of 23 spectroscopic and 32
photometric massive cluster members across the four clusters and 65
spectroscopic and 26 photometric comparable field galaxies, we find that after
taking into account contamination from interlopers, of
the cluster members are involved in potential mergers, compared to
of the field galaxies. We see no evidence of merger
enhancement in the central cluster environment with respect to the field,
suggesting that galaxy-galaxy merging is not a stronger source of galaxy
evolution in cluster environments compared to the field at these redshifts.Comment: Accepted by Ap
The Evolution of Environmental Quenching Timescales to
Using a sample of 4 galaxy clusters at and 10 galaxy
clusters at , we measure the environmental quenching
timescale, , corresponding to the time required after a galaxy is accreted
by a cluster for it to fully cease star formation. Cluster members are selected
by a photometric-redshift criterion, and categorized as star-forming,
quiescent, or intermediate according to their dust-corrected rest-frame colors
and magnitudes. We employ a "delayed-then-rapid" quenching model that relates a
simulated cluster mass accretion rate to the observed numbers of each type of
galaxy in the cluster to constrain . For galaxies of mass , we find a quenching timescale of 1.24 Gyr
in the cluster sample, and 1.50 Gyr at . Using values
drawn from the literature, we compare the redshift evolution of to
timescales predicted for different physical quenching mechanisms. We find
to depend on host halo mass such that quenching occurs over faster timescales
in clusters relative to groups, suggesting that properties of the host halo are
responsible for quenching high-mass galaxies. Between and , we
find that evolves faster than the molecular gas depletion timescale and
slower than an SFR-outflow timescale, but is consistent with the evolution of
the dynamical time. This suggests that environmental quenching in these
galaxies is driven by the motion of satellites relative to the cluster
environment, although due to uncertainties in the atomic gas budget at high
redshift, we cannot rule out quenching due to simple gas depletion
ALMA Observations of Gas-Rich Galaxies in z~1.6 Galaxy Clusters: Evidence for Higher Gas Fractions in High-Density Environments
We present ALMA CO (2-1) detections in 11 gas-rich cluster galaxies at z~1.6,
constituting the largest sample of molecular gas measurements in z>1.5 clusters
to date. The observations span three galaxy clusters, derived from the Spitzer
Adaptation of the Red-sequence Cluster Survey. We augment the >5sigma
detections of the CO (2-1) fluxes with multi-band photometry, yielding stellar
masses and infrared-derived star formation rates, to place some of the first
constraints on molecular gas properties in z~1.6 cluster environments. We
measure sizable gas reservoirs of 0.5-2x10^11 solar masses in these objects,
with high gas fractions and long depletion timescales, averaging 62% and 1.4
Gyr, respectively. We compare our cluster galaxies to the scaling relations of
the coeval field, in the context of how gas fractions and depletion timescales
vary with respect to the star-forming main sequence. We find that our cluster
galaxies lie systematically off the field scaling relations at z=1.6 toward
enhanced gas fractions, at a level of ~4sigma, but have consistent depletion
timescales. Exploiting CO detections in lower-redshift clusters from the
literature, we investigate the evolution of the gas fraction in cluster
galaxies, finding it to mimic the strong rise with redshift in the field. We
emphasize the utility of detecting abundant gas-rich galaxies in high-redshift
clusters, deeming them as crucial laboratories for future statistical studies.Comment: 8 pages, 3 figures, published in ApJ Letters; updated to match
published versio
Improving Photoelectron Counting and Particle Identification in Scintillation Detectors with Bayesian Techniques
Many current and future dark matter and neutrino detectors are designed to
measure scintillation light with a large array of photomultiplier tubes (PMTs).
The energy resolution and particle identification capabilities of these
detectors depend in part on the ability to accurately identify individual
photoelectrons in PMT waveforms despite large variability in pulse amplitudes
and pulse pileup. We describe a Bayesian technique that can identify the times
of individual photoelectrons in a sampled PMT waveform without deconvolution,
even when pileup is present. To demonstrate the technique, we apply it to the
general problem of particle identification in single-phase liquid argon dark
matter detectors. Using the output of the Bayesian photoelectron counting
algorithm described in this paper, we construct several test statistics for
rejection of backgrounds for dark matter searches in argon. Compared to simpler
methods based on either observed charge or peak finding, the photoelectron
counting technique improves both energy resolution and particle identification
of low energy events in calibration data from the DEAP-1 detector and
simulation of the larger MiniCLEAN dark matter detector.Comment: 16 pages, 16 figure
In-situ characterization of the Hamamatsu R5912-HQE photomultiplier tubes used in the DEAP-3600 experiment
The Hamamatsu R5912-HQE photomultiplier-tube (PMT) is a novel high-quantum
efficiency PMT. It is currently used in the DEAP-3600 dark matter detector and
is of significant interest for future dark matter and neutrino experiments
where high signal yields are needed.
We report on the methods developed for in-situ characterization and
monitoring of DEAP's 255 R5912-HQE PMTs. This includes a detailed discussion of
typical measured single-photoelectron charge distributions, correlated noise
(afterpulsing), dark noise, double, and late pulsing characteristics. The
characterization is performed during the detector commissioning phase using
laser light injected through a light diffusing sphere and during normal
detector operation using LED light injected through optical fibres
Radon backgrounds in the DEAP-1 liquid-argon-based Dark Matter detector
The DEAP-1 \SI{7}{kg} single phase liquid argon scintillation detector was
operated underground at SNOLAB in order to test the techniques and measure the
backgrounds inherent to single phase detection, in support of the
\mbox{DEAP-3600} Dark Matter detector. Backgrounds in DEAP are controlled
through material selection, construction techniques, pulse shape discrimination
and event reconstruction. This report details the analysis of background events
observed in three iterations of the DEAP-1 detector, and the measures taken to
reduce them.
The Rn decay rate in the liquid argon was measured to be between 16
and \SI{26}{\micro\becquerel\per\kilogram}. We found that the background
spectrum near the region of interest for Dark Matter detection in the DEAP-1
detector can be described considering events from three sources: radon
daughters decaying on the surface of the active volume, the expected rate of
electromagnetic events misidentified as nuclear recoils due to inefficiencies
in the pulse shape discrimination, and leakage of events from outside the
fiducial volume due to imperfect position reconstruction. These backgrounds
statistically account for all observed events, and they will be strongly
reduced in the DEAP-3600 detector due to its higher light yield and simpler
geometry
- …