12 research outputs found

    Adrenomedullin-RAMP2 and -RAMP3 Systems Regulate Cardiac Homeostasis during Cardiovascular Stress (アドレノメデュリン-RAMP2系・RAMP3系は、心血管系ストレスに対して、心臓の恒常性を維持する)

    Get PDF
    信州大学(Shinshu university)博士(医学)雑誌に発表。 / Endocrinology 162(3) :bqab001(2021); doi:10.1210/endocr/bqab001. © The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: [email protected] NANQI. Adrenomedullin-RAMP2 and -RAMP3 Systems Regulate Cardiac Homeostasis during Cardiovascular Stress (アドレノメデュリン-RAMP2系・RAMP3系は、心血管系ストレスに対して、心臓の恒常性を維持する). 信州大学, 2021, 博士論文. 博士(医学), 甲第1244号, 令和03年03月31日授与.doctoral thesi

    Photo-fermentative hydrogen production from mixed substrate by mixed bacteria

    No full text
    Photo-fermentative H2 production by mixed bacteria and pure bacterium Rhodopseudomonas faecalis RLD-53 using single and mixed substrate as carbon source was investigated in batch culture. Experimental results showed that 60 mmol/L acetate was the optimal concentration for mixed bacterial H 2 production and maximum cumulative H2 volume was 2468 ± 123 mL H2/L-culture. It was also found that propionate or butyrate was a key factor for enhancing H2 production in mixed substrate system. Photo-H2 production can be greatly promoted when proper concentration of propionate and butyrate were added into acetate medium as mixed substrate and a higher H2 yield of 2931 ± 146 mL H2/L-culture was obtained. In addition, it was worth noting that when the strain RLD-53 was added into mixed bacteria with different concentration ratios, H2 yield did not yet increase. Interestingly, H2 production capacity gradually decreased with ratio of strain RLD-53 to mixed bacteria from 8:0 to 4:4, and then gradually increased from 4:4 to 0:8. This implied that the competition relationship between strain RLD-53 and mixed bacteria in substrate utilization strongly influenced their H2 production

    Study on the Sugar-Producing Effect of High-Temperature Anaerobic Straw Biosaccharification Strain

    No full text
    The utilization of straw waste cellulose will be beneficial by economic, social, and environmental means. The present study sought to screen the high-efficiency cellulose sugar-producing strain from corn straw. The 16S high-throughput sequencing method and the combination of morphological, physiological, and biochemical characteristics of the strain confirmed the strain to be Clostridium thermocellum, which was named Clostridium thermocellum FC811. Moreover, the single factor experiment was conducted to investigate the effect of environmental factors on saccharification efficiency. The optimal saccharification conditions of cellulose saccharification of FC811 strain selected through response surface analysis were as follows: temperature of 58.9 °C, pH of 7.21, culture time of 6.60 d, substrate concentration of 5.01 g/L, and yeast powder concentration of 2.15 g/L. The soluble sugar yield was 3.11 g/L, and the conversion rate of reducing sugar was 62.2%. This study will provide a reference for resource and energy utilization of straw materials, simultaneous fermentation of sugar and hydrogen production, and their large-scale production and application

    Diversity Temporal–Spatial Dynamics of Potato Rhizosphere Ciliates and Contribution to Nitrogen- and Carbon-Derived Nutrition in North-East China

    No full text
    Ciliates are an important component of the rhizosphere microorganism community, but their nutritional contribution to plants has not been fully revealed. In this paper, we investigated the rhizosphere ciliate community of potatoes during six growth stages, illustrated the spatial–temporal dynamics of composition and diversity, and analyzed the correlation between soil physicochemical properties. The contributions of ciliates to the carbon- and nitrogen-derived nutrition of potatoes were calculated. Fifteen species of ciliates were identified, with higher diversity in the top soil, which increased as the potatoes grew, while they were more abundant in the deep soil, and the number decreased as the potatoes grew. The highest number of species of ciliates appeared in July (seedling stage). Among the five core species of ciliates, Colpoda sp. was the dominant species in all six growth stages. Multiple physicochemical properties affected the rhizosphere ciliate community, with ammonium nitrogen (NH4+-N) and the soil water content (SWC) greatly influencing ciliate abundance. The key correlation factors of ciliates diversity were NH4+-N, available phosphorus (AP), and soil organic matter (SOM). The annual average contribution rates of carbon and nitrogen by rhizosphere ciliates to potatoes were 30.57% and 23.31%, respectively, with the highest C/N contribution rates reaching 94.36% and 72.29% in the seedling stage. This study established a method for estimating the contributions of carbon and nitrogen by ciliates to crops and found that ciliates could be potential organic fertilizer organisms. These results might be used to improve water and nitrogen management in potato cultivation and promote ecological agriculture

    Microbiome convergence enables siderophore-secreting-rhizobacteria to improve iron nutrition and yield of peanut intercropped with maize

    Get PDF
    Intercropping has the potential to improve plant nutrition as well as crop yield. However, the exact mechanism promoting improved nutrient acquisition and the role the rhizosphere microbiome may play in this process remains poorly understood. Here, we use a peanut/maize intercropping system to investigate the role of root-associated microbiota in iron nutrition in these crops, combining microbiome profiling, strain and substance isolation and functional validation. We find that intercropping increases iron nutrition in peanut but not in maize plants and that the microbiota composition changes and converges between the two plants tested in intercropping experiments. We identify a Pseudomonas secreted siderophore, pyoverdine, that improves iron nutrition in glasshouse and field experiments. Our results suggest that the presence of siderophore-secreting Pseudomonas in peanut and maize intercropped plays an important role in iron nutrition. These findings could be used to envision future intercropping practices aiming to improve plant nutrition

    Photothermal Janus Anode with Photosynthesis‐Shielding Effect for Activating Low‐Temperature Biological Wastewater Treatment

    No full text
    Biological wastewater treatment (BWT), which is used to manage global wastewater, suffers from a sharp decrease in microbial activity at low temperature (<10 °C). Photothermal technology with a high energy efficiency theoretically exceeding 80% has the potential to activate low‐temperature BWT. However, photothermal BWT is threatened by the propagation of photosynthetic algae in wastewater under irradiation, and these microorganisms can suppress the functional bacteria or even kill anaerobic species by photosynthetically releasing oxygen. Herein, taking microbial fuel cells (MFCs) as a representative biological reactor, a photothermal Janus anode (PTJA) is designed, composed of a carbon black/polydimethylsiloxane photothermal nonporous layer and a graphite felt porous layer to promote low‐temperature BWT. Unlike traditional symmetrical porous anodes, the nonporous layer of the PTJA can isolate the wastewater in the porous layer from light irradiation during photothermal conversion, thus preventing photosynthetic algae from poisoning anaerobic functional microbes. Under ≈1 sun illumination, the PTJA MFC exhibits 1.6 and 24.2 times higher organic pollutant removal rate and power density generation, respectively, than MFCs using traditional anodes for low‐temperature BWT (7.0 ± 2.0 °C). This development can allow novel utilization of solar energy and is a promising resolution for low‐temperature BWT.NRF (Natl Research Foundation, S’pore)Accepted versio

    Microbiome convergence enables siderophore-secreting-rhizobacteria to improve iron nutrition and yield of peanut intercropped with maize

    No full text
    Abstract Intercropping has the potential to improve plant nutrition as well as crop yield. However, the exact mechanism promoting improved nutrient acquisition and the role the rhizosphere microbiome may play in this process remains poorly understood. Here, we use a peanut/maize intercropping system to investigate the role of root-associated microbiota in iron nutrition in these crops, combining microbiome profiling, strain and substance isolation and functional validation. We find that intercropping increases iron nutrition in peanut but not in maize plants and that the microbiota composition changes and converges between the two plants tested in intercropping experiments. We identify a Pseudomonas secreted siderophore, pyoverdine, that improves iron nutrition in glasshouse and field experiments. Our results suggest that the presence of siderophore-secreting Pseudomonas in peanut and maize intercropped plays an important role in iron nutrition. These findings could be used to envision future intercropping practices aiming to improve plant nutrition
    corecore