498 research outputs found

    Experimental Study of Slug Flow for Condensation in a Square Cross-Section Micro-Channel at Low Mass Velocities

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.In this paper, condensation flows in a cross-flow air-cooled micro-condenser were investigated for mass velocities (representing the mass flow rates over the micro-condenser cross-section area) lower than 12 kg.m (−2).s(−1), with n-pentane used as the working fluid. This micro-condenser consisted of a transparent square cross-section micro-channel placed horizontally, having inner and outer edges of 553 and 675 μm, respectively, and a real length exposed to the coolant of 196 mm. One of the specificities of the experimental bench was the choice of the air as a coolant so that the external heat transfer is limiting. Three main flow zones were identified: annular zone, intermittent (i.e. elongated bubbles or slug) zone and spherical bubbles zone. A specific experimental procedure based on bubbles tracking was developed in order to determine the hydraulic and thermal parameters in the intermittent zone. The mean displacement and condensation velocities of the elongated bubbles were determined according to their mean length for different mass velocities of the n-pentane. Besides, the mean latent heat flux density released by the condensation of the elongated bubbles was determined according to their mean surface for different mass velocities of the n-pentane, and compared to the imposed heat flux density

    Design of an innovative polymerase chain reaction device based on buoyancy driven flow

    Get PDF
    This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.Polymerase Chain Reaction (PCR) plays a central role in the field of molecular biology. The miniaturization of PCR systems is promising as it potentially minimizes costly reagent consumption and time required for analysis. In PCR microdevices a sample solution is usually handled by external pumps. An alternative solution relies on temperature-induced density difference in the presence of a body force to induce buoyancy driven flow. This alternative method is easy to be used and does not require expensive setup, but, to date, the thermo-fluid-dynamic field in the micro-channels still needs to be optimized. The present study focuses on the design of micro-channels, having innovative and optimized shapes to obtain proper fluid actuation and DNA sample amplification within buoyancy driven flow PCR devices. A parametric study is carried out by means of computational thermal fluid dynamic modeling: several channel geometry configurations were compared in terms of time required for analysis, temperature distribution and priming volume. The advantages and disadvantages of such configurations are discussed

    Detection and isolation of circulating tumor cells with single-cell resolution: A successful lab-on-a-chip device

    Get PDF
    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.This paper presents the unique features of DEPArray™ an automated system enabling image-based cell sorting with single-cell resolution and describes its potential application in the field of oncology

    Design of an air-flow microchamber for microparticles detec

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.A novel device, able to funnel a suspension of micrometric particles in air into a microchamber equipped with a capacitive sensor, has been designed for the detection and characterization of particulate matter (PM) in air. Numerical simulations have been performed to predict the trajectory of the microparticles through the PDMS microchamber where the sensor is located. The feasibility of detecting single PM10 particles has been demonstrated by our experiments, where sequences of single industrial talc particles (average diameter of 8 μm) have been detected and counted by a capacitive sensor. Our results indicate that radical miniaturization of air quality monitors is possible and, therefore, pervasive monitoring of air pollution will be soon feasible

    Computational and experimental investigation of mixing in microchannels

    Get PDF
    This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.Mixing is a key process for the successful of all chemical or biochemical reactions, so effective micromixers represent essential components for micro total analysis systems (μTAS) or lab-on-a-chip. In the present study a combined computational and experimental approach was adopted to evaluate how the efficiency of a Y-mixer can be enhanced by modifying its downstream geometry. Three different geometries were studied and compared: Y-straight channel, Y-sine channel and Y-wrinkled wall channel. For each of them the influence of perfusing flow rates and channel cross section aspect ratio was investigated. Physical prototypes were built using a simple technique based on a xerographic process, and their mixing performance was experimentally evaluated. Computational models of the designed micromixers were generated: the Navier-Stokes equations for an incompressible Newtonian fluid and the advection-diffusion equation were solved with an uncoupled approach by means of the finite volume method. The computational and experimental results were critically compared, revealing Y-wrinkled wall mixer as the best performer among those considered and suggesting criteria of possible improvements and optimization

    Microfluidic Platform for Adherent Single Cell High-Throughput Screening

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Traditionally, in vitro investigations on biology and physiology of cells rely on averaging the responses eliciting from heterogeneous cell populations, thus being unsuitable for assessing individual cell behaviors in response to external stimulations. In the last years, great interest has thus been focused on single cell analysis and screening, which represents a promising tool aiming at pursuing the direct and deterministic control over cause-effect relationships guiding cell behavior. In this regard, a high-throughput microfluidic platform for trapping and culturing adherent single cells was presented. A single cell trapping mechanism was implemented based on dynamic variation of fluidic resistances. A round-shaped culture chamber (Φ=250μm, h=25μm) was conceived presenting two connections with a main fluidic path: (i) an upper wide opening, and (ii) a bottom trapping junction which modulates the hydraulic resistance. Several layouts of the chamber were designed and computationally validated for the optimization of the single cell trapping efficacy. The optimized chamber layouts were integrated in a polydimethylsiloxane (PDMS) microfluidic platform presenting two main functionalities: (i) 288 chambers for trapping single cells, and (ii) a chaoticmixer based serial dilution generator for delivering both soluble factors and non-diffusive molecules under spatio-temporally controlled chemical patterns. The devices were experimentally validated and allowed for trapping individual U87-MG (human glioblastoma-astrocytoma epithelial-like) cells and culturing them up to 3 days

    Flow patterns and heat transfer in a square cross-section micro condenser working at low mass fluxes

    Get PDF
    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Flow patterns and heat transfer in an air-cooled square cross-section micro condenser were investigated. The test section consisted of a borosilicate square micro channel, of inner and outer hydraulic diameters of 0.49 mm and 0.6 mm respectively, and a length of 100 mm. The transparent material of the micro channel allowed the visualization of the different condensation flow patterns. The imposed mass velocities were ranging between 1 and 10 kg m-2 s-1. In this range of mass fluxes, three main flow regimes were identified: Annular regime, intermittent regime, and spherical bubbles regime. Then, the isolated bubbles zone (the end of the intermittent zone + the spherical bubbles zone) was particularly studied. A specific experimental procedure was developed, basing on bubble tracking, in order to determine accurately the hydraulic and thermal parameters profiles in this zone according to the axial position in the micro channel, such as the vapour quality profile x(z). Thanks to energy balance, the liquid temperature profile Tl(z) in the isolated bubbles zone was determined for different initial values. A thermal non-equilibrium between the liquid and vapour phases was identified. Therefore, the latent heat flux was then quantified and compared to the total heat flux in this zone.FNRAE (MATRAS) and the Microgravity Application Program of the European Space Agenc

    Microfluidic mixing of low viscosity Boger fluids

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.This study is focused on the development of low viscosity Boger fluids and on the investigation of their elasticity on emulsion formation. Non-Newtonian continuous phases (Boger fluids) made of two different molecular weight Polyacrylamide in water plus glycerol solutions were used. While, as Newtonian continuous phase, a water plus glycerol solution showing the same viscosity as the non-Newtonian one was prepared and as dispersed phase silicon oil was used. Visualization of these emulsions flowing through a micromixer was useful in order to extract quantitative informations of their behavior, such as the velocity profile and droplets’ size distribution. Then the formation of vortex upstream of a divergent-convergent configuration has been shown as the wall migration effect, which drives droplets away from the walls and toward the center of the microcapillary investigated

    Current Opinions in Open and Endovascular Treatment of Major Arterial Injuries in Pediatric Patient

    Get PDF
    Pediatric major arterial vascular injuries may belong to the same principal categories as adults, but have been poorly documented, with an estimated overall incidence of <2% of all vascular traumas. Open surgery has been the mainstay of treatment, but no clear guidelines have been developed to recommend the best practice patterns in terms of strategy or repair as well as postoperative pharmacological regimen. Herein, we report three cases and a narrative review of the available literature regarding the main aspects when dealing with pediatric arterial injuries based on the predominant series available from the most recent published literature

    Blood Flow in silico: From Single Cells to Blood Rheology

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Mesoscale hydrodynamics simulations of red blood cells under flow have provided much new insight into their shapes and dynamics in microchannel flow. The presented results range from the behavior of single cells in confinement and the shape changes in sedimentation, to the clustering and arrangement of many cells in microchannels and the viscosity of red blood cell suspensions under shear flow. The interaction of red blood cells with other particles and cells, such as white blood cells, platelets, and drug carriers, shows an essential role of red blood cells in the margination of other blood components
    corecore