This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Traditionally, in vitro investigations on biology and physiology of cells rely on averaging the
responses eliciting from heterogeneous cell populations, thus being unsuitable for assessing individual cell
behaviors in response to external stimulations. In the last years, great interest has thus been focused on single
cell analysis and screening, which represents a promising tool aiming at pursuing the direct and deterministic
control over cause-effect relationships guiding cell behavior. In this regard, a high-throughput microfluidic
platform for trapping and culturing adherent single cells was presented. A single cell trapping mechanism
was implemented based on dynamic variation of fluidic resistances. A round-shaped culture chamber
(Φ=250μm, h=25μm) was conceived presenting two connections with a main fluidic path: (i) an upper wide
opening, and (ii) a bottom trapping junction which modulates the hydraulic resistance. Several layouts of the
chamber were designed and computationally validated for the optimization of the single cell trapping
efficacy. The optimized chamber layouts were integrated in a polydimethylsiloxane (PDMS) microfluidic
platform presenting two main functionalities: (i) 288 chambers for trapping single cells, and (ii) a chaoticmixer
based serial dilution generator for delivering both soluble factors and non-diffusive molecules under
spatio-temporally controlled chemical patterns. The devices were experimentally validated and allowed for
trapping individual U87-MG (human glioblastoma-astrocytoma epithelial-like) cells and culturing them up to
3 days