79 research outputs found

    Sample Preparation for Determination of Bioaccessibility of Essential and Toxic Elements in Legumes

    Get PDF
    The methods used to estimate the bioavailability of elements have different approaches. These tests are based on selective extraction or simulation of the physiology of the gastrointestinal tract. The sample preparation methods require studies about extraction procedures, thermal treatment, and decomposition of organic matter. The method of decomposing organic matter assisted by microwaves introduced adequate results for most chemical elements in pulses. The content of the elements present in the extracts obtained by employing the method physiologically based extraction test (PBET) is lower than those obtained by simple bioaccessibility extraction test (SBET) due to complexing effects of metal ions. The mineral content in the gastric and intestinal stages can vary significantly with the investigated leguminous species and the elements. The thermal processing can affect the concentrations of the elements analyzed in samples from leguminous species. This results from the heat capacity to change the speciation of chemical elements. The change speciation may modify the solubility and mobility of chemical species under the conditions of the gastrointestinal tract, which alters the bioavailability. In this sense, it can be concluded that the domestic cooking process can influence the nutritional and toxicological potential of pigeon pea, cowpea, and mangalo

    Magnetic resonance spectroscopy investigations of brown adipose tissue and isolated brown adipocytes.

    Get PDF
    Brown adipose tissue and collagenase-isolated brown adipocytes were investigated in rats by means of 1H and 13C nuclear magnetic resonance spectroscopy. After chloroform-methanol extraction of brown adipose tissue, proton and natural abundance 13C spectra of the chloroform fraction showed resonances attributable to triglycerides, and were qualitatively similar to those of the corresponding fraction of white adipose tissue. By means of quantitative analysis of 1H spectra, fatty acid unsaturation and polyunsaturation in triglycerides were found to be lower in brown than white adipose tissue; moreover, unsaturation parameters decreased in triglyceride fatty acids of brown adipose tissue upon norepinephrine administration or cold acclimatization of rats, and were affected by the age of donors. The molar percentage of mono- and polyunsaturated C18 fatty acids in triglycerides was determined from 13C spectra and found to change in the early post-natal period. Isolated, agarose-embedded brown adipocytes from 4-day-old rats showed a number of peaks in the carbohydrate region of 1H spectra that were not present in spectra of white adipocytes and almost disappeared in brown fat cells of older animals. These peaks could be restored by insulin exposure. Natural abundance 13C spectra of isolated brown adipocytes were resolved enough to allow unambiguous assignment of resonances to carbons of fatty acids, glycerol, glucose, ethanolamine, and choline. Calculation of the mono- to polyunsaturated fatty acids ratio in the cells was also performed. Nuclear magnetic resonance spectroscopy is a useful tool for the investigation of brown adipose tissue and adipocytes therefrom

    Rapamycin does not adversely affect intrahepatic islet engraftment in mice and improves early islet engraftment in humans.

    Get PDF
    Objective: In this study we examined the effect of rapamycin (RAPA), a key component of the immunosuppressive regimen in clinical islet transplantation, on islet engraftment and function in vivo. Methods and results: Diabetic C57BL/6 or BALB/C recipient mice were transplanted with 350 syngeneic islets through the portal vein (PV-Tx; C57BL/6 n = 60; BALB/C n = 22) and treated with once-daily oral RAPA (1 mg/kg) or vehicle. No differences in post-transplant blood glucose concentrations and glucose tolerance were observed between RAPA-and vehicle-treated mice. The impact of RAPA on human islet engraftment was assessed in 10 patients with type 1 diabetes treated with 0.1 mg/kg/day rapamycin before islet transplantation. Compared to non pre-treated islet transplant recipents (n = 12), RAPA pre-treated patients had increased blood RAPA concentrations (p = 0.006) and fasting C-peptide concentrations (p = 0.005) in the two weeks post-transplant. RAPA pre-treatment was associated with a reduction in chemokines CCL2 and CCL3 concentrations pre-transplant (p < 0.01), and a dampened chemokine response (p = 0.005) post-transplant. Concordantly, in vitro RAPA inhibited the secretion of CCL2 and CCL3 by monocytes. Conclusion: Rapamycin does not adversely affect intrahepatic islet engraftment in the mouse, and potentially improves islet engraftment in humans by an anti-inflammatory mechanism

    Human pancreatic islet preparations release HMGB1: (ir)relevance for graft engraftment.

    Get PDF
    High levels of donor-derived high-mobility group box 1 (HMGB1) protein have been associated with poor islet graft outcome in mouse models. The aim of our work was to determine whether HMGB1 released by human islets had independent proinflammatory effects that influence engraftment in humans. Human islet preparations contained and released HMGB1 in different amounts, as determined by Western blot and ELISA (median 17 pg/ml/IEQ/24 h; min–max 0–211, n = 74). HMGB1 release directly correlated with brain death, donor hyperamilasemia, and factors related to the pancreas digestion procedure (collagenase and digestion time). HMGB1 release was significantly positively associated with the release of other cytokines/chemokines, particularly with the highly released "proinflammatory" CXCL8/IL-8, CXCL1/GRO-α, and the IFN-γ-inducible chemokines CXCL10/IP-10 and CXCL9/MIG. HMGB1 release was not modulated by Toll-like receptor 2, 3, 4, 5, and 9 agonists or by exposure to IL-1β. When evaluated after islet transplantation, pretransplant HMGB1 release was weakly associated with the activation of the coagulation cascade (evaluated as serum cross-linked fibrin products), but not with the immediate posttransplant inflammatory response. Concordantly, HMGB1 did not affect short-term human islet function. Our data show that human islet HMGB1 release is a sign of "damaged" islets, although without any independent direct role in graft failure

    Transcriptional dynamics of induced pluripotent stem cell differentiation into β cells reveals full endodermal commitment and homology with human islets.

    Get PDF
    Abstract Background aims Induced pluripotent stem cells (iPSCs) have the capacity to generate β cells in vitro, but the differentiation is incomplete and generates a variable percentage of off-target cells. Single-cell RNA sequencing offers the possibility of characterizing the transcriptional dynamics throughout differentiation and determining the identity of the final differentiation product. Methods Single-cell transcriptomics data were obtained from four stages across differentiation of iPSCs into β cells and from human donor islets. Results Clustering analysis revealed that iPSCs undertake a full endoderm commitment, and the obtained endocrine pancreatic cells have high homology with mature islets. The iPSC-derived β cells were devoid of pluripotent residual cells, and the differentiation was pancreas-specific, as it did not generate ectodermal or mesodermal cells. Pseudotime trajectory identified a dichotomic endocrine/non-endocrine cell fate and distinct subgroups in the endocrine branch. Conclusions Future efforts to produce β cells from iPSCs must aim not only to improve the resulting endocrine cell but also to avoid differentiation into non-pancreatic endoderm cells

    PDX1<sup>LOW</sup> MAFA<sup>LOW</sup> β-cells contribute to islet function and insulin release

    Get PDF
    Transcriptionally mature and immature β-cells co-exist within the adult islet. How such diversity contributes to insulin release remains poorly understood. Here we show that subtle differences in β-cell maturity, defined using PDX1 and MAFA expression, contribute to islet operation. Functional mapping of rodent and human islets containing proportionally more PDX1HIGH and MAFAHIGH β-cells reveals defects in metabolism, ionic fluxes and insulin secretion. At the transcriptomic level, the presence of increased numbers of PDX1HIGH and MAFAHIGH β-cells leads to dysregulation of gene pathways involved in metabolic processes. Using a chemogenetic disruption strategy, differences in PDX1 and MAFA expression are shown to depend on islet Ca2+ signaling patterns. During metabolic stress, islet function can be restored by redressing the balance between PDX1 and MAFA levels across the β-cell population. Thus, preserving heterogeneity in PDX1 and MAFA expression, and more widely in β-cell maturity, might be important for the maintenance of islet function
    corecore