87 research outputs found

    Freezing and falling in Parkinson's disease: from the laboratory to the clinic

    No full text
    Contains fulltext : 118449.pdf (Publisher’s version ) (Open Access)Radboud Universiteit Nijmegen, 13 februari 2013Promotor : Bloem, B.R. Co-promotor : Overeem, S

    Influence of perturbation velocity on balance control in Parkinson's disease

    Get PDF
    Contains fulltext : 138303.pdf (publisher's version ) (Open Access)Underlying somatosensory processing deficits of joint rotation velocities may cause patients with Parkinson's disease (PD) to be more unstable for fast rather than slow balance perturbations. Such deficits could lead to reduced proprioceptive amplitude feedback triggered by perturbations, and thereby to smaller or delayed stabilizing postural responses. For this reason, we investigated whether support surface perturbation velocity affects balance reactions in PD patients. We examined postural responses of seven PD patients (OFF medication) and eight age-matched controls following backward rotations of a support-surface platform. Rotations occurred at three different speeds: fast (60 deg/s), medium (30 deg/s) or slow (3.8 deg/s), presented in random order. Each subject completed the protocol under eyes open and closed conditions. Full body kinematics, ankle torques and the number of near-falls were recorded. Patients were significantly more unstable than controls following fast perturbations (26% larger displacements of the body's centre of mass; P<0.01), but not following slow perturbations. Also, more near-falls occurred in patients for fast rotations. Balance correcting ankle torques were weaker for patients than controls on the most affected side, but were stronger than controls for the least affected side. These differences were present both with eyes open and eyes closed (P<0.01). Fast support surface rotations caused greater instability and discriminated Parkinson patients better from controls than slow rotations. Although ankle torques on the most affected side were weaker, patients partially compensated for this by generating larger than normal stabilizing torques about the ankle joint on the least affected side. Without this compensation, instability may have been greater

    The possible price of auditory cueing: influence on obstacle avoidance in Parkinson's disease.

    No full text
    Item does not contain fulltextBACKGROUND: Under carefully controlled conditions, rhythmic auditory cueing can improve gait in patients with Parkinson's disease (PD). In complex environments, attention paid to cueing might adversely affect gait, for example when a simultaneous task-such as avoiding obstacles-has to be executed. We primarily examined whether concurrent auditory cueing interferes with an obstacle avoidance task in patients with PD. The secondary aim was to study differences between patients with and without freezing of gait. METHODS: Nineteen patients with PD (8 with freezing) were examined on a treadmill in 4 conditions: normal walking; walking with auditory cueing; walking with an obstacle avoidance task; and walking with auditory cueing and obstacle avoidance. Outcome measures included kinematic gait parameters and obstacle crossing parameters. RESULTS: Auditory cueing improved gait in PD, without negative effects on concurrent obstacle avoidance. Additionally, freezers avoided obstacles less efficiently than non-freezers. CONCLUSIONS: PD patients are able to successfully execute an obstacle avoidance task, when auditory cueing is administered simultaneously. The different obstacle avoidance behavior in freezers may contribute to their higher fall risk.01 april 201

    Treatment of metatarsalgia based on claw toe deformity through soft tissue release of the metatarsophalangeal joint and resection of the proximal interphalangeal joint: Evaluation based on foot kinematics and plantar pressure distribution.

    No full text
    INTRODUCTION: This study investigated the effect of operative claw toe correction with release of the metatarsophalangeal (MTP) joint, repositioning of the plantar fat pad and resection of the proximal interphalangeal joint on foot kinematics, plantar pressure distribution and Foot Function Index (FFI). METHODS: Prospective experimental study with pretest-posttest design. The plantar pressure, 3D foot kinematics and the FFI of 15 patients with symptomatic claw toes were measured three months before and 12months after surgery. Mean pressure, peak pressure and pressure time integral per sensor and various foot angles were calculated for the pre- and posttest and compared to a control group (N=15). RESULTS: Claw toe patients have increased pressure under the distal part of the metatarsal head and less pressure under the proximal part of the metatarsal heads compared to healthy controls. After surgery, there was a redistribution of pressure, resulting in a significant decrease of pressure under the distal part and an increase under the proximal part of the metatarsal head, providing a more equal plantar pressure distribution. Except for some small areas under the forefoot, heel and toes, there were no significant differences in pressure distribution between the operated feet and controls. Small, but significant differences between the pre- and postoperative condition were found for the lateral arch angle, calcaneus/malleolus supination and tibio-talar flexion. The score on the FFI improved statistically significant. DISCUSSION: These findings imply that the present operative procedure results in a more equal distribution of the plantar pressure under the forefoot and decrease of pain and offers successful treatment of metatarsalgia based on claw toe deformity

    Walking patterns in Parkinson's disease with and without freezing of gait

    No full text
    Item does not contain fulltextThe pathophysiology underlying freezing of gait (FOG) in Parkinson's disease remains incompletely understood. Patients with FOG ("freezers") have a higher temporal variability and asymmetry of strides compared to patients without FOG ("non-freezers"). We aimed to extend this view, by assessing spatial variability and asymmetry of steps and interlimb coordination between the upper and lower limbs during gait. Twelve freezers, 15 non-freezers, and 15 age-matched controls were instructed to walk overground and on a treadmill. Kinematic data were recorded with a motion analysis system. Both freezers and non-freezers showed an increased spatial variability of leg movements compared to controls. In addition, both patient groups had a deficit in interlimb coordination, not only between ipsilateral arms and legs, but also between diagonally positioned limbs. The only difference between freezers and non-freezers was a decreased step length during treadmill walking. We conclude that parkinsonian gait-regardless of FOG-is irregular, not only in the legs, but also with respect to interlimb coordination between the arms and legs. FOG is reflected by abnormal treadmill walking, presumably because this provides a greater challenge to the defective supraspinal control than overground walking, hampering the ability of freezers to increase their stride length when necessary

    Split-belt locomotion in Parkinson's disease with and without freezing of gait

    No full text
    Contains fulltext : 115427.pdf (publisher's version ) (Closed access)BACKGROUND: Parkinson's disease (PD) patients have an increased gait asymmetry and variability, which is most pronounced in patients with freezing of gait (FOG). We examined if stride time variability and deficits in interlimb coordination between the upper and lower limbs would increase during split-belt locomotion in PD, and particularly so in patients with FOG. METHODS: Fourteen PD patients (seven with FOG, matched for disease severity with the seven non-freezers) and 10 healthy controls walked on a treadmill with split belts at different speeds (2 versus 3km/h). Gait was recorded by means of a video motion analysis system. Outcome measures were stride length asymmetry and variability, stride time asymmetry and variability, ipsilateral and contralateral interlimb coordination, and phase coordination index. RESULTS: Both PD subjects and controls were able to adapt to split-belt walking by modulating their stride length. However, freezers showed a larger increase in stride time asymmetry and stride time variability due to split-belt walking compared to non-freezers. Furthermore, contralateral interlimb coordination improved in control subjects during split-belt walking, but not in PD patients (freezers and non-freezers). Phase coordination index did not change differently across the three groups. CONCLUSIONS: The ability to walk under split-belt conditions was preserved in PD. Non-freezers and controls compensated for the experimentally increased stride length asymmetry by decreasing their stride time asymmetry. This ability was lost in freezers, who in fact increased their stride time asymmetry during split-belt walking. As a result, stride time variability also increased in freezers. These findings support the hypothesis that FOG is related to gait asymmetries and to gait timing deficits
    • …
    corecore