12 research outputs found

    Assessment of Precipitation Error Propagation in Discharge Simulations over the Contiguous United States

    Get PDF
    AbstractThis study characterizes precipitation error propagation through a distributed hydrological model based on the river basins across the Contiguous United States (CONUS), to better understand the relationship between errors in precipitation inputs and simulated discharge (i.e., P-Q error relationship). The NLDAS-2 precipitation and its simulated discharge are used as the reference to compare with TMPA-3B42 V7, TMPA-3B42RT V7, StageIV, CPC-U, MERRA-2, and MSWEP-2.2 for 1,548 well gauged river basins. The relative errors in multiple conventional precipitation products and their corresponding discharges are analysed for the period of 2002-2013. The results reveal positive linear P-Q error relationships at annual and monthly timescales, and the stronger linearity for larger temporal accumulations. Precipitation errors can be doubled in simulated annual accumulated discharge. Moreover, precipitation errors are strongly dampened in basins characterized by temperate and continental climate regimes, particularly for peak discharges, showing highly nonlinear relationships. Radar-based precipitation product consistently shows dampening effects on error propagation through discharge simulations at different accumulation timescales compared to the other precipitation products. Although basin size and topography also influence the P-Q error relationship and propagation of precipitation errors, their roles depend largely on precipitation products, seasons and climate regimes

    Comparison of different radar-raingauge rainfall merging techniques

    No full text
    The improvement of precipitation estimation with the use of radar-raingauge rainfall merging techniques is influenced by several factors, such as topography, storm types, raingauge network density for adjustment, data quality and the rainfall accumulation time. However, the influence of the raingauge network configuration on the performance of radar-raingauge merging methods is often ignored. The aim of this study is to compare and evaluate the performance of different radar-raingauge merging methods on various densities of raingauge network and raingauge network configurations. The analysis of the effect of the raingauge network density shows that the performance of Kriging merging methods increases with the increase of raingauge network density. The results also showed that the influence of raingauge network configuration on the spatial distribution of precipitation of the merged products is relatively smaller for the Kriging with radar-based error correction (KRE) and Kriging with external drift (KED) methods than for the ordinary Kriging method. This indicates that the inclusion of radar data in the KRE and KED methods helps to maintain the spatial distribution of precipitation on an hourly timescale. According to the statistical performance indicators and visual inspection of the merged rainfall fields, the KED outperforms the other radar-raingauge merging techniques, regardless of raingauge network density and configuration.</jats:p

    Characteristics of Precipitation and Floods during Typhoons in Guangdong Province

    No full text
    The spatial and temporal characteristics of precipitation and floods during typhoons in Guangdong province were examined by using TRMM TMPA 3B42 precipitation data and the Dominant River Routing Integrated with VIC Environment (DRIVE) model outputs for the period 1998–2019. The evaluations based on gauge-measured and model-simulated streamflow show the reliability of the DRIVE model. The typhoon tracks are divided into five categories for those that landed on or influenced Guangdong province. Generally, the spatial distribution of precipitation and floods differ for different typhoon tracks. Precipitation has a similar spatial distribution to flood duration (FD) but is substantially different from flood intensity (FI). The average precipitation over Guangdong province usually reaches its peak at the landing time of typhoons, while the average FD and FI reach their peaks several hours later than precipitation peak. The lagged correlations between precipitation and FD/FI are hence always higher than their simultaneous correlations

    Statistical Bias Correction of Precipitation Forecasts Based on Quantile Mapping on the Sub-Seasonal to Seasonal Scale

    No full text
    Accurate precipitation forecasting is challenging, especially on the sub-seasonal to seasonal scale (14–90 days) which mandates the bias correction. Quantile mapping (QM) has been employed as a universal method of precipitation bias correction as it is effective in correcting the distribution attributes of mean and variance, but neglects the correlation between the model and observation data and has computing inefficiency in large-scale applications. In this study, a quantile mapping of matching precipitation threshold by time series (MPTT-QM) method was proposed to tackle these problems. The MPTT-QM method was applied to correct the FGOALS precipitation forecasts on the 14-day to 90-day lead times for the Pearl River Basin (PRB), taking the IMERG-final product as the observation. MPTT-QM was justified by comparing it with the original QM method in terms of precipitation accumulation and hydrological simulations. The results show that MPTT-QM not only improves the spatial distribution of precipitation but also effectively preserves the temporal change, with a better precipitation detection ability. Moreover, the MPTT-QM-corrected hydrological modeling has better performance in runoff simulations than the QM-corrected modeling, with significantly increased KGE metrics ranging from 0.050 to 0.693. MPTT-QM shows promising values in improving the hydrological utilities of various lead time precipitation forecasts
    corecore