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Abstract 33 

This study characterizes precipitation error propagation through a distributed hydrological 34 

model based on the river basins across the Contiguous United States (CONUS), to better 35 

understand the relationship between errors in precipitation inputs and simulated discharge 36 

(i.e., P-Q error relationship). The NLDAS-2 precipitation and its simulated discharge are used 37 

as the reference to compare with TMPA-3B42 V7, TMPA-3B42RT V7, StageIV, CPC-U, 38 

MERRA-2, and MSWEP-2.2 for 1,548 well gauged river basins. The relative errors in 39 

multiple conventional precipitation products and their corresponding discharges are analysed 40 

for the period of 2002-2013. The results reveal positive linear P-Q error relationships at 41 

annual and monthly timescales, and the stronger linearity for larger temporal accumulations. 42 

Precipitation errors can be doubled in simulated annual accumulated discharge. Moreover, 43 

precipitation errors are strongly dampened in basins characterized by temperate and 44 

continental climate regimes, particularly for peak discharges, showing highly nonlinear 45 

relationships. Radar-based precipitation product consistently shows dampening effects on 46 

error propagation through discharge simulations at different accumulation timescales 47 

compared to the other precipitation products. Although basin size and topography also 48 

influence the P-Q error relationship and propagation of precipitation errors, their roles depend 49 

largely on precipitation products, seasons and climate regimes. 50 

 51 
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1. Introduction 54 

Difficulties in deriving accurate precipitation (P) estimation arise in many remote areas, 55 

particularly in complex terrain basins (Tao; Barros 2013; Tao et al. 2016). Consequently, 56 

satellite-based precipitation products have been increasingly developed to facilitate large-57 

scale hydrological applications (Wu et al. 2012a; Wu et al. 2014). However, despite a wide 58 

range of hydrological studies applying satellite-based rainfall estimates for many years (Adler 59 

et al. 2000; Buarque et al. 2011; He et al. 2017; Huffman et al. 2001; Maggioni; Massari 60 

2018; Meng et al. 2014; Nikolopoulos et al. 2013; Prakash et al. 2016; Stampoulis; 61 

Anagnostou 2012; Su et al. 2011; Wu et al. 2014; Yan et al. 2020; Zhong et al. 2019), the 62 

practical applications remain limited due to a number of error sources and uncertainties 63 

(Hossain; Anagnostou 2004; Sarachi et al. 2015). Reliable estimation of precipitation in space 64 

and time is highly desired for hydrological applications, as uncertainties in rainfall estimates 65 

can potentially lead to large errors in simulation outputs (Arnaud et al. 2002; Borga 2002; 66 

Courty et al. 2018; Morin et al. 2006; Nanding; Rico-Ramirez 2021; Rico-Ramirez et al. 67 

2015; Smith et al. 2004; Tscheikner-Gratl et al. 2018; Wu et al. 2017; Younger et al. 2009; 68 

Zhang et al. 2018). 69 

Many attempts have been conducted to quantify errors and uncertainties associated with 70 

satellite-based rainfall estimates to improve the understanding of precipitation physics 71 

(Behrangi et al. 2010; Hong et al. 2004; Liu; Fu 2010; Xu et al. 1999), retrieval algorithms 72 

(Bauer et al. 2001; Hossain et al. 2004; Moradkhani; Meskele 2010; Tong et al. 2014), 73 

measuring devices (e.g., infrared and microwave) (Hossain; Anagnostou 2004; Todd et al. 74 

2001) and sampling frequencies (Iida et al. 2006; Nijssen; Lettenmaier 2004; Steiner et al. 75 

2003). Since precipitation instruments have their own strengths and limitations in accuracy 76 

and spatial-temporal representativeness, the quality of satellite-based rainfall products were 77 
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evaluated for defining the best available precipitation product in specific regions (Bitew et al. 78 

2012; Chen et al. 2020; Collischonn et al. 2008; Cui et al. 2019; Diem et al. 2014; Dinku et 79 

al. 2010; Dinku et al. 2008; Dos Reis et al. 2017; Feidas 2010; He et al. 2017; Le Coz; van de 80 

Giesen 2020; Meng et al. 2014; Monsieurs et al. 2018; Nicholson et al. 2019; Nikolopoulos et 81 

al. 2013; Stampoulis; Anagnostou 2012; Toté et al. 2015; Wu et al. 2017). These studies 82 

largely improve our understanding of the characteristics of errors and uncertainties in satellite 83 

rainfall estimates, which is crucial to improve future satellite rainfall products (Huffman et al. 84 

2015) and hence their hydrological applications, such as global flood monitoring and 85 

forecasting (Wu et al. 2014).  86 

Simulating the rainfall-runoff process using hydrological models can be useful for evaluating 87 

precipitation products at the river basin scale through comparison with an independent 88 

reference, e.g., discharge at river basin outlet (Beck et al. 2017b; Wu et al. 2017). Since 89 

rainfall is the most important driving component of the hydrologic cycle, the model 90 

performance depends heavily on the quality of precipitation inputs. However, due to the 91 

strong nonlinearity in hydrological processes, precipitation errors can be either amplified or 92 

dampened in simulated hydrological fluxes (mainly discharge) in different river basins (Artan 93 

et al. 2007; Bitew et al. 2012; Ehsan Bhuiyan et al. 2019; Gourley et al. 2011; Nikolopoulos 94 

et al. 2013). Therefore, propagation of precipitation errors through hydrological modelling 95 

has been identified as one of the critical issues in understanding the scale relationship 96 

between the errors in precipitation and in the corresponding hydrological simulations 97 

(Nikolopoulos et al. 2010). 98 

The main characteristics of modeling experiments, datasets and key findings in recent 99 

literature on precipitation-discharge error relationships are summarized in Table 1. Typically, 100 

a linear relationship between precipitation error and hydrological simulation errors was 101 
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identified, and the errors in precipitation were translated into even larger errors in 102 

corresponding simulation outputs (Biemans et al. 2009; Decharme; Douville 2006; Kobold 103 

2005; Maggioni et al. 2013; Nikolopoulos et al. 2010; Sharif et al. 2004; Wu et al. 2017). 104 

However, a few other studies demonstrated dampening effects of rainfall errors in discharge 105 

simulations (Falck et al. 2015; Mei et al. 2016). Moreover, propagation of precipitation errors 106 

through hydrological modelling varies with seasons (Biemans et al. 2009) and dampening or 107 

amplification of errors depends on rainfall products and basins sizes (Maggioni et al. 2013; 108 

Nijssen; Lettenmaier 2004; Nikolopoulos et al. 2010). Specifically, Nikolopoulos et al. 109 

(2010) demonstrated that the amplitude of dampening effect reduces with the increase of 110 

basin size. In contrast, Maggioni et al. (2013) reported a stronger dampening of precipitation 111 

errors for larger basins. However, there was no sign of dependency of error propagation on 112 

basin size in the study of Falck et al. (2015). Nikolopoulos et al. (2010) also reported that 113 

precipitation error propagation depends on the error metric, indicating that the propagation of 114 

rainfall errors into runoff volume result in completely different conclusions compared to the 115 

propagation from the same errors into runoff peaks. 116 

Although various studies have investigated error propagation of precipitation inputs through 117 

hydrological modelling (Fekete et al. 2004; Nijssen; Lettenmaier 2004; Serpetzoglou et al. 118 

2010; Vivoni et al. 2007), how precipitation error propagates through a hydrological model 119 

remains unclear and sometimes controversial. Therefore, a systematic investigation on how 120 

errors in precipitation (P) translate into errors in hydrological predictions, in particular on 121 

precipitation-discharge errors, is crucial for better interpretation and use of various P products 122 

to derive simulations for hydrological applications, such as water resource management, flow 123 

storage and flood control designs. 124 
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Specifically, building on the previous studies, such as Nikolopoulos et al. (2010) and Wu et 125 

al. (2017), this study aims to further examine the relationship between the errors in several 126 

widely used P products derived from different sources (i.e., gauge, ground-based radar and 127 

satellite) and their simulated discharge over an extensive number of sites across the CONUS. 128 

Moreover, this study assesses how precipitation error propagates (amplification or 129 

dampening) into hydrological simulations as a function of several factors, including the type 130 

of P product, temporal scale, climate, basin size and topography. It is worth mentioning that 131 

another motivation behind this study is that the P-Q error relations can be useful to estimate 132 

potential errors in flood predictions induced by precipitation errors when validation is not 133 

feasible. In particular, such relations can better inform the users of the Global Flood 134 

Monitoring System (GFMS) in their response to predicted flood events.  135 

The rest of this paper is organized into the following sections. First, a description of the study 136 

basins and P datasets are presented in Section 2, including the criteria for final selection of 137 

study basins. Section 3 provides a detailed description of modeling framework based on a 138 

distributed hydrological model, methodology of basins classification and definition of error 139 

metrics. Section 4 analyses the characteristics of precipitation error propagation through 140 

discharge simulations and P-Q error relationship, and their potential influencing factors 141 

including P product, climate type, discharge magnitude, temporal accumulation scale, 142 

seasonality, and basins topography (size, elevation and slope). Finally, Section 4 provides a 143 

summary and concluding remarks based on the study results. 144 
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2. Study domain and data 145 

2.1. Study basins 146 

The river basins are selected based on the availability of in-situ gauges from the United States 147 

Geological Survey (USGS) Geospatial Attributes of Gauges for Evaluating Streamflow 148 

(GAGES-II) database (Falcone 2011). The GAGES-II dataset consists of 9,322 streamflow 149 

gauges maintained by USGS over the CONUS with a large variety of geospatial and 150 

hydroclimate characteristics. A total of 1,548 candidate river basins are identified for this 151 

study based on the following criteria: (1) each gauge has sufficient historic streamflow 152 

observations (i.e., at least 10 years of records between 2002 and 2013) at daily scale, and (2) 153 

there is a good agreement (within 10% difference) between the hydrological model 154 

calculated drainage area and USGS National Water Information System (NWIS) reported 155 

area, the latter of which is considered as the reference value (following Wu et al. (2014) and 156 

Alfieri et al. (2013)). The spatial distribution of the selected GAGES-II sites is shown in 157 

Figure 1b. 158 

2.2. Precipitation products 159 

Multiple spatially gridded precipitation products are available across the CONUS, including 160 

Version 7 of the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation 161 

Analysis for real-time (TMPA-3B42RT V7) and research (TMPA-3B42 V7) applications 162 

(Huffman et al. 2007), the NOAA/National Canters for Environmental Prediction (NCEP) 163 

Stage IV product (Lin; Mitchell 2005), the phase 2 of the North American Land Data 164 

Assimilation System (NLDAS-2) (Rui; Mocko 2013; Xia et al. 2012a), the CPC Unified 165 

(CPC-U) (Xie et al. 2007), the observation-corrected Modern-Era Retrospective analysis for 166 

Research and Applications, version 2 (MERRA-2) (Gelaro et al. 2017; Reichle et al. 2016) 167 
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and the Multi-Source Weighted-Ensemble Precipitation, version 2.2 (MSWEP-2.2) (Beck et 168 

al. 2017a; Beck et al. 2019). These P products are mainly sourced from rain gauges (i.e., 169 

NLDAS-2 and CPC-U), ground-based radars (i.e., Stage IV), satellite-only (i.e., TMPA-3B42 170 

V7 and TMPA-3B42RT V7) and reanalysis datasets (i.e., MERRA-2 and MSWEP-2.2). 171 

Precipitation products with higher temporal resolution (e.g., NLDAS-2, Stage IV, MERRA-2 172 

and MSWEP-2.2) were simply aggregated to 3-hourly accumulations, while the CPC-U 173 

product at daily timescale was disaggregated based on the temporal distribution of 3-hourly 174 

TMPA-3B42 V7 product. A summary of the characteristics of these gridded P products, 175 

including their temporal and spatial resolutions, is provided in Table 2. 176 

3. Methodology 177 

3.1. Hydrological model 178 

The Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model (Wu 179 

et al. 2014) is used to simulate river discharges in this study. The DRIVE model, as the core 180 

of the real-time Global Flood Monitoring System (GFMS), couples a widely used land 181 

surface model, the Variable Infiltration Capacity (VIC) model (Liang et al. 1996; Liang et al. 182 

1994), with a hierarchical Dominant River Tracing-based Routing (DRTR) model (Wu et al. 183 

2011; Wu et al. 2014). The VIC model solves full water and energy balances with good skill 184 

due to its characterization of both rainfall and snowmelt dominated runoff generation 185 

processes and soil frost dynamics (Christensen et al. 2004; Elsner et al. 2010; Hamlet et al. 186 

2005). The DRTR is a gridded and physically based routing model, which allows the use of 187 

high-resolution sub-grid information aggregated for coarser resolution routing simulation and 188 

integrates the grid-level drainage network with numerical schemes based on the Strahler 189 

ordering system (Wu et al. 2014). 190 
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Since this study aims to provide insights on error propagation of precipitation for GFMS 191 

applications, the DRIVE model setup is adopted directly from the existing GFMS 192 

configuration that runs at spatial and temporal resolution of 1/8th degree and 3-hourly 193 

respectively. The VIC model runs in “Water Balance” mode. The hydrographic parameters 194 

(e.g., flow direction, drainage area, flow length, channel width, channel slope, overland slope, 195 

flow fraction, river order) for the DRTR runoff-routing scheme were derived by using the 196 

hierarchical Dominant River Tracing (DRT) river network upscaling algorithm (Wu et al. 197 

2011; Wu et al. 2012b). The global soil and vegetation parameters were specified following 198 

Nijssen et al. (2001). Other atmospheric forcing data (i.e., air temperature and wind speed) 199 

were obtained from the NASA Modern-Era Retrospective Analysis for Research and 200 

Applications (MERRA) reanalysis (Rienecker et al. 2011). More detailed descriptions of the 201 

DRIVE model, forcing inputs, and model parameter setup are presented in previous studies 202 

(Huang et al. 2021; Wu et al. 2014; Yan et al. 2020). All forcing inputs are preprocessed at 203 

the same resolution in space and time that are consistent with model configuration. 204 

To examine the error propagation of precipitation inputs through the hydrological model, the 205 

basic approach is to use the reference P and its simulated discharges to quantify errors in 206 

precipitation and their corresponding discharge simulations (Mei et al. 2016). Based on Xia et 207 

al. (2012b) and Wu et al. (2017), the NLDAS-2 and its DRIVE simulated discharges are 208 

defined as reference in this study. Note that the NLDAS-2 might not be among the best 209 

precipitation products over all the study basins. The absolute accuracy, however, does not 210 

impact the purpose of investigating the error propagation from precipitation through 211 

hydrological processes into discharge error, i.e., the relationship between errors in 212 

precipitation versus the errors in simulated discharge. 213 
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The hydrological model setups (e.g., initial states, parameters, atmospheric forcings other 214 

than precipitation) are kept the same for different P products. The same initial condition for 215 

each P product based DRIVE simulation is provided by the continuous NLDAS-2 based 216 

simulations for the period 1997-1998 (with two years of spinning-up running before the start 217 

of the simulation of 1997). This removes the effects of differences in initial conditions among 218 

products and focusing only on rainfall-runoff process. Since the model simulation uncertainty 219 

results from the interactions between each source of uncertainty rather than individual ones, 220 

the decomposition of individual source of errors in model predictions remains challenging 221 

(Pianosi; Wagener 2016; Pianosi et al. 2016). Therefore, the design of this study is based on 222 

the assumption that the discharge errors are mainly due to precipitation errors and the 223 

interactions between different sources of errors and uncertainties are neglected. The DRIVE 224 

model runs between 1998-2013. Simulations during the period of 2002–2013 are analyzed, 225 

while the first four years are treated as the spin-up period. Note that the improvement of 226 

model performance per se is not within the scope of this study, and therefore further 227 

calibration of the DRIVE model is not conducted. 228 

3.2. Basin classification 229 

According to the Köppen climate classification (Beck et al. 2018; Köppen 1918; McKnight 230 

2000), the 1,548 river basins over the CONUS are categorized into three main climate groups 231 

(continental, temperate and dry), as shown in Figure 1.c. A brief description of the nature of 232 

climate regimes, including precipitation, temperature, and hydrological characteristics of 233 

basins with dominant subclass are presented in Table 3. The description of the catchment 234 

hydrological characteristics are based on the assessment of regional patterns of seasonal 235 

water balance presented in Berghuijs et al. (2014). 236 
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Many studies have also identified catchment morphology, such as slope and flatness (Pena 237 

Arancibia et al. 2010; Uchida et al. 2005), as an influential factor on rainfall-runoff 238 

generation. In order to measure the combined impacts of elevation and slope on precipitation 239 

error propagation, the Multi Resolution index of Valley Bottom Flatness (MRVBF) (Gallant; 240 

Dowling 2003) is calculated based on the HydroSHEDS (Lehner et al. 2008) global 241 

hydrography dataset at 1-km resolution (as shown in Figure 1.a) using the Dominant River 242 

Tracing (DRT) algorithm, as in Wu et al. (2019). MRVBF identifies flat valley bottoms based 243 

on their topographic signature as flat low-lying areas at a range of scales. Flatness is 244 

measured by the inverse of slope, and lowness is measured by a ranking of elevation with 245 

respect to a circular surrounding area. The MRVBF indices are then grouped into seven 246 

general classes (Figure 1.d), where higher class numbers indicate cells with generally flatter 247 

and lower topography, consistent with Wu et al. (2019). 248 

Hydroclimatic heterogeneity results in varying streamflow regimes across the CONUS 249 

(Berghuijs et al. 2014). In general, the total amount of annual precipitation decreases from 250 

east to west over the region (Figure 2). There is no significant seasonal difference in 251 

precipitation amount in the eastern CONUS, while the western and central CONUS show 252 

stronger seasonality in precipitation accumulations. Specifically, precipitation is higher 253 

(lower) during winter (summer) in the western part, while central CONUS shows the 254 

opposite. In higher-latitude and mountainous regions streamflow regimes are dominated by 255 

snowmelt, which means precipitation is accumulated as snow in winter and released as runoff 256 

in spring leading to large variations in seasonal discharge (Berghuijs et al. 2016). In humid 257 

regions soil moisture supply and atmospheric demand play an important role (Novick et al. 258 

2016; Yuan et al. 2019). 259 
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3.3. Error metrics 260 

The following evaluation metrics are computed to quantify errors in basin-average 261 

precipitation and simulated discharges: Nash-Sutcliffe coefficient (Nash; Sutcliffe 1970) 262 

(𝑁𝑆𝐸), relative absolute bias (𝑟_𝐴𝐵𝐼𝐴𝑆), and relative root mean square error (𝑟_𝑅𝑀𝑆𝐸). 263 

𝑟_𝐴𝐵𝐼𝐴𝑆 is used to measure the systematic error in both precipitation and discharge 264 

simulations, while the 𝑟_𝑅𝑀𝑆𝐸 represents the random errors normalized with the references. 265 

They are defined as follows: 266 

 𝑁𝑆𝐸 = 1 −
∑ [𝑅𝑖 − 𝑀𝑖]

2𝑁
𝑖=1

∑ [𝑅𝑖 − 𝑅�̅�]2𝑁
𝑖=1

 (1) 

 𝑟_𝐴𝐵𝐼𝐴𝑆 =
1

𝑁
∑ |

𝑀𝑖 − 𝑅𝑖

𝑅𝑖
| × 100%

𝑁

𝑖=1
 (2) 

 
𝑟_𝑅𝑀𝑆𝐸 =

√1
𝑁

∑ (𝑀𝑖 − 𝑅𝑖)2𝑁
𝑖=1

𝑅�̅�

× 100% 
(3) 

 𝑓 =
𝐸𝑄

𝐸𝑃
 (4) 

where 𝑀𝑖 and 𝑅𝑖  represent the model simulated and reference discharges, respectively, at 267 

time step 𝑖; 𝑅�̅� is the mean reference discharges; 𝑁 is the total number of time steps, and only 268 

𝑀𝑖 is considered for calculation when 𝑅𝑖 > 0. The corresponding error metrics for 269 

precipitation can be obtained by replacing 𝑀𝑖 and 𝑅𝑖 with the target P products and NLDAS-270 

2 respectively. As shown in Equation 4, a scale factor is defined to quantify how much error 271 

in precipitation translates into simulated discharge (Mei et al. 2016; Nikolopoulos et al. 272 

2010), where 𝐸𝑄 and 𝐸𝑃 represent the relative errors (e.g., 𝑟_𝐴𝐵𝐼𝐴𝑆 and 𝑟_𝑅𝑀𝑆𝐸) in 273 

simulated discharges and precipitation, respectively. A propagation factor greater (smaller) 274 

than one indicates the amplification (dampening) of errors in precipitation through discharge 275 

simulation; ratio of one indicates an equal translation of errors from precipitation to 276 

discharges. A linear regression model is applied to describe the relationship between the 277 
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errors in precipitation estimates and theirs simulated discharges. The strength of linearity is 278 

identified if the coefficient of determination (𝑅2) is greater than 0.5 (with P-value < 0.05). 279 

For example, a given P-Q error relationship is considered significantly ‘positive linear’ only 280 

if the slope of linear regression is positive with P-value < 0.05. Otherwise, the error 281 

relationship is considered to be ‘non-linear’. Note that the errors in both target P products and 282 

their estimated discharge are calculated based on pre-defined references and don’t necessarily 283 

represent “true” errors. 284 

4. Results and discussions 285 

4.1. Evaluation of DRIVE-NLDAS-2 simulated discharge 286 

The evaluation of simulated discharge driven by NLDAS-2 precipitation against USGS 287 

observed discharge is to gain a basic understanding of the efficiency of NLDAS-2 based 288 

simulations. Hydrological performances of the DRIVE-NLDAS-2 simulated discharge vary 289 

largely across the CONUS (Figure 2), reflecting the model efficiency in different regions. 290 

The result shows that the reference simulation generally represents a certain degree of 291 

observation fidelity in simulations with about 40% of gauge sites showing positive 𝑁𝑆𝐸 292 

scores with a mean (median) value of 0.47 (0.48) and maximum of 0.97 (USGS: 05474000). 293 

The spatial patterns of 𝑟_𝐴𝐵𝐼𝐴𝑆 and 𝑟_𝑅𝑀𝑆𝐸 are similar, and the lower errors correspond to 294 

higher 𝑁𝑆𝐸 values. 295 

An overview of the distributions of different P products against the reference P (NLDAS-2) is 296 

shown in Figure 3. The gauge-involved P products (i.e., CPC-U, MERRA-2 and MSWEP) 297 

agree better with the reference P for most of the regions, but they show overestimations in 298 

annual precipitation accumulations over the West Coast of the CONUS. Whereas the 299 
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satellite-only TMPA-3B42RT product clearly overestimate the reference rainfall, and the 300 

situation is improved effectively after gauge adjustment in TMPA-3B42. Radar-based Stage 301 

IV shows underestimations of reference rainfall over basins in the Western CONUS (Henn et 302 

al. 2018). This is because of difficulties in retrieving orographic precipitation due to beam 303 

blockage, and signal attenuation in mountainous regions (Bringi et al. 2011; Dai et al. 2015; 304 

Germann et al. 2006; Nanding; Rico-Ramirez 2021; Nanding et al. 2015; Rico-Ramirez 2012; 305 

Wang et al. 2015). The performances of these precipitation products vary between basins due 306 

to the strengths and limitations in their measuring devices. There is no single product 307 

outperforms the others in terms of both precipitation estimations and hydrological predictions 308 

for all study basins, including the reference product. In this study, the definition of reference 309 

for both precipitation and discharge is for comparing between the errors in precipitation and 310 

discharge directly in the model system. 311 

The following results focus on (1) the scale relationship between errors in basin-averaged 312 

precipitation and those in simulated discharges (hereafter referred to as P-Q error 313 

relationship), (2) error propagation from precipitation to simulated discharges, and (3) 314 

dependency of those of characteristics on a variety of factors. 315 

4.2. P-Q error relationship 316 

A strong positive linear relationship between errors in precipitation and simulated discharges 317 

is observed regardless of the P products and accumulation timescales in terms of 𝑟_𝑅𝑀𝑆𝐸 318 

(Figure 4). The Stage IV product shows the strongest linearity in P-Q error relationship, 319 

followed by MSWEP, with the highest value of coefficient of determination. Remote sensing 320 

precipitation estimates (e.g., TMPA and Stage IV) tend to have larger errors in both 321 

precipitation and simulated discharges compared to gauge-based P products. Specifically, 322 
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Stage IV mainly shows larger errors over basins in western regions of the CONUS (e.g., 323 

taking the 100th meridian west longitude as the approximate dividing line). This is due to the 324 

blockage in complex mountainous topography and the ground clutter contamination to radar 325 

signals. The lower skills were also reported in both precipitation estimation and discharge 326 

simulations (Maddox et al. 2002; Moreda et al. 2002; Nelson et al. 2016) reflecting the 327 

challenges in both data obtaining and modeling in complex terrain. However, although 328 

relative errors are much higher for basins on western edge, the P-Q error relationship of Stage 329 

IV shows strong (𝑟2 > 0.5) positive linear behaviors for both the western and eastern 330 

CONUS (Figure S1). Gauge-adjusted satellite P products present lower errors, suggesting 331 

that the gauge-correction procedure can effectively reduce errors in satellite rainfall estimates 332 

and lead to better hydrological simulations, which is consistent with previous studies (Su et 333 

al. 2011; Wu et al. 2014). As shown in Figure 4, the distributions of errors in precipitation 334 

and discharge tend to shift toward smaller errors at annual timescale (blue dots) compared to 335 

monthly timescales (grey dots), indicating that errors in precipitation are suppressed at larger 336 

timescale accumulation. Similar patterns in the P-Q error relationship are also observed for 337 

𝑟_𝐴𝐵𝐼𝐴𝑆 (not shown). In general, linearity in the P-Q error relationship is stronger at annual 338 

timescale compared to monthly, in line with Wu et al. (2017). This is probably because of 339 

delays in the transformation of P to Q (due to channel routing and storage in snow, 340 

subsurface, lakes, etc.) are less important at annual than monthly time scales. Annual 341 

accumulations are more reliable to estimate hydrological water budget components (e.g., 342 

discharge) than monthly timescales (Berghuijs et al. 2014), assuming that changes in water 343 

storage (soil and surface) are negligible at annual accumulations for a closed watershed 344 

without significant streamflow diversions or impact of reservoirs (Adam et al. 2006). 345 
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The relationship between the 𝑟_𝐴𝐵𝐼𝐴𝑆 in precipitation and 𝑁𝑆𝐸 scores for discharge 346 

simulation tends to have negative linear behaviours with varying strength for different P 347 

products and accumulation timescales (Figure 5). This negative linear relationship indicates 348 

that precipitation products with less bias or errors tend to have better hydrological 349 

performances in terms of NSE scores. The linear relationship between 𝑟_𝐴𝐵𝐼𝐴𝑆 in 350 

precipitation and 𝑁𝑆𝐸 scores for discharge simulation is weaker than aforementioned P-Q 351 

error relationship. In particular, the satellite-based products show a much weaker linear 352 

relationship (𝑟2 < 0.25) between errors in precipitation and 𝑁𝑆𝐸 for discharge simulations 353 

though they have strong linearity (𝑟2 > 0.5) in the P-Q error relationship. This can be 354 

explained by equations (1) and (2) where 𝑁𝑆𝐸 is more sensitive to larger errors, while the 355 

errors in precipitation tend to be translated into even larger errors in simulated discharge 356 

(Figure 4). 357 

4.3. Error propagation 358 

The relative errors in P products are generally translated into even larger relative errors in 359 

their simulated discharges (Figure 6). The propagation factors are higher for annual 360 

accumulations than for monthly accumulations in terms of their mean values. This could be 361 

due to the fact that the spatially distributed precipitation errors are filtered out by averaging 362 

them to mean areal precipitation, while the error in the discharge at the outlet of a river basin 363 

is resulted from a cascade of numerical solutions for equations of various no-linear processes 364 

with spatially distributed precipitation inputs containing the original errors. Although the 365 

numerical solutions deployed by the hydrological model derive reasonably stable discharge 366 

simulations, there is inherent error propagation from precipitation input to discharge output 367 

which depends much more on the error pass and propagation among the numerical solution 368 

schemes than on spatial scales and seasonal changes. Therefore, the canceling effects for the 369 
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precipitation error as a function of basin area and averaging time (Nijssen; Lettenmaier 2004) 370 

doesn’t apply to the discharge error. This explains that the error propagation ratio between 371 

the discharge errors and precipitation errors tends to be greater than one, in particular at 372 

annual scale for a river basin with a stable hydrological water budget, while it varies 373 

significantly at monthly and shorter time scales. 374 

However, the amplification effects of precipitation-to-discharge errors vary across P 375 

products. Stage IV consistently shows lower values in propagation factors at different 376 

accumulation timescales. This could be due to the better performance of the higher resolution 377 

radar-based product in moderating the precipitation errors in hydrological processes, as 378 

presented in Nikolopoulos et al. (2010). The errors in discharges simulated by satellite-based 379 

P products are more than double the errors in precipitation. Similarly, the errors in gauge-380 

based P products are at least doubled in annual discharge, although they show relatively low 381 

errors in precipitation estimations (Figure 4). Similar patterns are observed for the 382 

propagation of both 𝑟_𝑅𝑀𝑆𝐸 and 𝑟_𝐴𝐵𝐼𝐴𝑆. 383 

Spatial patterns of error propagation factors also vary among P products, and accumulation 384 

timescales (Figures 7-8). There are clear differences in error propagation patterns between P 385 

products over the study basins. Specifically, at annual timescale, the errors in TMPA-3B42 386 

V7 simulated discharges are more than triple the errors in precipitation for about 33% (the 387 

highest) of basins, while a number of basins with the lowest proportion of 6% is obtained by 388 

the Stage IV (Figure 7). The spatially distributed hydrological model used in this study takes 389 

into account the spatial variability of precipitation and calculates flow contributions from 390 

elementary grid areas. Therefore, the spatial variability in precipitation amounts and 391 

intensities between different P products in each river basin could be responsible for the 392 

variability in the distribution of propagation factors among different P products, which 393 
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explains the different error propagation rates even if P products have similar basin-averaged 394 

precipitation accumulations.  395 

Compared to the annual scale, monthly accumulations show less amplification and more 396 

dampening effects of errors in most basins (Figure 7-8). For example, the number of basins 397 

with dampening effect is 51 for Stage IV at annual accumulations, while a number is 111 398 

basins for monthly accumulations. This decrease in the propagation factor at monthly 399 

timescales might be related to the fact that soil infiltration removes some of the short-term 400 

rainfall fluctuations by generating subsurface runoff, which contributes to the river channel 401 

discharge through a slower routing process. The filtering effects can be more visible in 402 

precipitation with higher errors (e.g., satellite-based P) particularly at monthly timescales and 403 

when subsurface soil layers are not saturated. This also partially explains the stronger 404 

linearity in annual P-Q error relationship compared to the linear relationship at monthly 405 

timescale (Figures 4). 406 

The sensitivity of precipitation error propagation patterns on reference data is also tested by 407 

using different P products and their simulated discharges as references, including satellite-408 

based (TMPA-3B42RT V7 and TMPA-3B42 V7), radar-based (StageIV) and reanalysis 409 

(MSWEP-2.2) products. Results based on TMPA-3B42 V7 are shown in Figure S7-S8. 410 

According to Figure S7, there are strong linear relationship between errors in precipitation 411 

and simulated discharges, regardless of P products and accumulation timescales. This is 412 

similar to the findings when NLDAS-2 is used as the reference. Moreover, Figure S8 also 413 

shows that precipitation errors are less amplified at monthly timescale compared to annual 414 

timescale, which is also observed when using MSWEP-2.2 and StageIV as the references. 415 

Moreover, similar analysis has also been done by only using 584 basins for which the 416 

NLDAS-2 DRIVE simulations show positive NSE scores, which leads to similar results that 417 
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are obtained by using all basins (figures omitted). Therefore, the findings on changing 418 

patterns of precipitation error propagation are convincingly hold. 419 

4.4. Impact of hydroclimatic factors 420 

With regard to the impacts of climate regime on P-Q error relationship, the differences in the 421 

strength of linearity are much smaller among PQE products and seasons in basins situated in 422 

temperate and continental climate regimes compared to those with dry climates (Figure 9). 423 

Temperate and continental climate regimes have less seasonal streamflow variations, while 424 

large variations in storage and streamflow regimes over basins with dry climates are observed 425 

(Table 3). In dry climates, basins are mostly semi-arid and have distinct seasonality in 426 

precipitation. For instance, basins in mountainous region in western CONUS receive most of 427 

precipitation during winter, while streamflow in these basins is mainly generated from snow-428 

melting (Berghuijs et al. 2014), suggesting a non-linear behavior in P-Q error relationship 429 

during the warm season, particularly during April-June (AMJ) (Figure 9).  430 

A stronger linearity in the P-Q error relationship is also observed when considering all 431 

discharge magnitudes rather than considering only peak discharges, i.e., 𝑄 ≥ 99𝑡ℎ percentile 432 

(Figure 9). Stronger dampening effects are further observed when considering peak 433 

discharges compared to all discharge magnitudes at monthly timescale (Figure 10), regardless 434 

of climate regimes and PQE products. The error in precipitation is calculated based on river 435 

basin average, while the translation of such precipitation error into discharge is based on a 436 

chain of rainfall-runoff generation and routing processes. That said, the precipitation error is 437 

temporally distributed along the whole hydrograph and the error in flood peak is associated to 438 

only part of the precipitation error. Stronger attenuation effects are observed for discharge 439 

peaks in basins with temperate and continental climates compared to dry climate basins 440 
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(Figure 10). In addition to precipitation, antecedent wetness conditions and water storage also 441 

play an important role in runoff generation in temperate and continental climates (Berghuijs 442 

et al. 2016). Although all P products tend to have more challenges in deriving accurate 443 

precipitation during extreme events, the error contributions to flood peak are from both the 444 

flood-causing precipitation and the antecedent wetness of the river basin. Therefore, the error 445 

dampening in the propagation can be caused by the reasonable model performance in 446 

continuous hydrological simulation of the wetness dynamics and filtering effects of the 447 

complex non-linear rainfall-runoff processes.  448 

In terms of seasonality, there is no clear difference between the mean propagation factors for 449 

peak discharges during seasons of AMJ and OND in continental and temperate basins (Figure 450 

11). For arid/semi-arid basins, however, the precipitation errors are clearly translated into 451 

even larger errors in discharges due to the high variability in precipitation during AMJ, 452 

whereas precipitation errors tend to be translated equally into discharge errors during OND. 453 

This is because the large water deficit during the dry period filters out the discharge errors 454 

and somehow similar to precipitation errors. 455 

4.5. Impact of basin size and topography 456 

The basin size also plays an important role in the P-Q error relationship and precipitation 457 

error propagation. Valley bottom regions (higher MRVBF class) are relatively larger in the 458 

plains of the eastern CONUS with less seasonal variations in precipitation and streamflow, 459 

except for a few basins in the north-eastern and south-eastern CONUS with strong 460 

seasonality. Basins at high elevations (lower MRVBF class) are mainly clustered in 461 

arid/semi-arid regions with strong seasonality in streamflow. Thus, the role of topography in 462 
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the P-Q error relationship and error propagation is studied together with the aforementioned 463 

hydroclimate classes (Figure S2-S4). 464 

The impact of basin size on the strength of P-Q error relationship varies between P products, 465 

seasons, and basin classes (Figure 12 and S2). For example, with the Stage IV, large basins 466 

show strong positive linear P-Q error relationship for dry climate regime compared to small 467 

basins, while the basin size show no clear impact on the strength of P-Q error relationship for 468 

basins with temperate and continental climate regimes. With MSWEP-2.2, large basins show 469 

strong linearity in P-Q error relationship for temperate and continental climate regimes 470 

particularly for warm seasons, while small basins show relatively stronger P-Q error 471 

relationship than large basins for dry climate regime. Moreover, for temperate climate 472 

regimes (or MRVBF classes ≥ 5), small basins also show less variations in the strength of P-473 

Q error relationship between seasons and P products compared to large basins. These results 474 

indicate that the impacts of basin size on the P-Q error relationship also depends on P 475 

product, season and climate regime. 476 

Figure 13 and Figure 14 demonstrate the propagation factors of 𝑟_𝑅𝑀𝑆𝐸 for basins with 477 

different size in each MRVBF class during seasons of OND and AMJ respectively when 478 

considering peak discharges. In terms of mean values, similar propagation factors are 479 

observed between small and large basins of each MRVBF class for each P product during the 480 

OND season (Figure 13). For example, precipitation errors are translated into similar 481 

magnitude of discharge errors for both small and large basins with lower MRVBF class 482 

(steeper and higher elevated basins). With the increase of MRVBF class (lower and flatter 483 

basins), the mean of propagation factors increases for both small and large basins, 484 

particularly for reanalysis P products (e.g., MERRA-2 and MSWEP-2.2). In contrast, during 485 

the AMJ season, larger basins show amplification effects on precipitation errors propagation 486 
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regardless of P products, MRVBF class and climate regimes, except the Stage IV product 487 

(Figure 14 and S4). Moreover, large basins also show greater variations in error propagation 488 

between P products and seasons which in line with the variations in P-Q error relationship. 489 

Meanwhile, the larger uncertainty in propagation factors with wider distributions (shape of 490 

violin plot) for each P is observed for large basins compared to small basins, which indicates 491 

that factors like basin size other than P products, seasons, and climate regimes also control 492 

the magnitude of error propagation for basins with different climate regimes. 493 

5. Conclusions 494 

This study investigates the characteristics of precipitation error propagation and the P-Q error 495 

relationship by applying a distributed hydrological model to 1,548 river basins across the 496 

CONUS. The NLDAS-2 precipitation and its DRIVE simulated discharge are used as the 497 

reference to quantify the relative errors (e.g., 𝑅𝑀𝑆𝐸 and 𝐴𝐵𝐼𝐴𝑆) in several P products and 498 

their corresponding discharge simulations for the period of 2002-2013. The analysis focus on 499 

the dependency of precipitation error propagation and the P-Q error relationship on a variety 500 

of factors including P product, temporal scale, climate regime, and basin topography. 501 

The results show the positive linear behaviours in P-Q error relationship at annual and 502 

monthly accumulations, and the linearity is stronger at larger accumulation timescale, 503 

suggesting that it is more reliable to estimate potential errors in hydrological simulation 504 

outputs due to precipitation errors at larger time scales. Precipitation errors are at least 505 

doubled in simulated discharge for annual accumulations, while dampening effects are more 506 

common in peak discharges. Moreover, the patterns of P-Q error relationship and error 507 

propagation are seasonal, and sensitive to the climate regimes of basins particularly for larger 508 

basins. The differences of linearity in P-Q error relationship are much smaller between 509 
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seasons and PQE products for the basins in temperate and continental climate regimes 510 

compare to the basins with dry climates. Regarding to the role of basin topography, the role 511 

of basin size on precipitation error propagation and P-Q error relationship largely depends on 512 

climate regimes and seasons. Generally, during the OND season precipitation errors are 513 

translated into similar magnitude of discharge errors for both small and large basins in each 514 

climate regime and MRVBF class in terms of mean propagation factor, while during the AMJ 515 

season larger basins show amplification effects on precipitation errors propagation regardless 516 

of P products, seasons and climate regimes. Large basins also show greater variations in error 517 

propagation and P-Q error relationship between P products and seasons. 518 

This study quantifies the P-Q error relationship at annual and monthly scales based on 519 

existing P products, and investigates the precipitation error propagation in discharge 520 

simulations and its links to hydroclimate, topographic characteristics of river basins. It helps 521 

in understanding the quality (bias and uncertainty) of flood simulation outputs and their 522 

relation to precipitation inputs, thus also shed light on potential ways to improve precipitation 523 

estimation products. However, floods are also highly linked to daily and finer time scales, 524 

and such P-Q error relationships at finer time scales warrant further investigation with more 525 

complicated processes considered in future studies. It is worth noting that the current findings are 526 

only based on a given hydrological model, and therefore the results might change with different 527 

models with different numerical schemes for runoff-routing processes. However, this study advances 528 

the understanding of the P-Q error relationship and its propagation in hydrological models that are 529 

similar to the DRIVE model and the possible uncertainty that is associated to the global flood 530 

monitoring and forecasting systems such as the GFMS. 531 

Furthermore, despite the findings revealed in this study fairly hold, the shortcoming is that 532 

the climate regimes are broadly classified into three main groups based on Köppen 533 
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classification, but the diversity of climate and hydrological regimes remains considerable 534 

within each class resulting in varying patterns of P-Q error relationship and error propagation 535 

within each class. Therefore, the changing patterns of error propagation from precipitation to 536 

hydrological simulation outputs require further detailed study of sub-clusters or regions based 537 

on both climate and catchment characteristics including seasonal water balances. 538 
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Table 1. A summary of relevant previous studies in terms of their study locations, adopted methods 880 
and key findings (the current paper is included for comparison). 881 

Study Site location  Methods & Datasets Key findings 

Sharif et al. 

(2004) 

United States a) Single watershed (21.2 sq.km) 

b) Radar rainfall estimates 

c) Ensemble of 500 events 

d) CASC2D model 

a) Errors in rainfall volume are amplified in runoff 

predictions 

b) Positive linear relationship between the rainfall volume, 

runoff volume and peak discharge errors 

Kobold 

(2005) 

Slovenia a) 2 river basins (87 and 1,848 sq.km)  

b) 2 rainfall estimates 

c) 3 storm events 

d) HEC-1 model 

a) Deviation of runoff is much greater than that of the 

rainfall 

b) Errors in rainfall lead to 1.6 times greater error in peak 

discharge 

 

Decharme; 

Douville 

(2006) 

Europe a) Single river basin (98,000 sq.km) 

b) SAFRAN rainfall estimates 

c) Annual and monthly scale 

d) ISBA land surface model 

a) Quasi-linear relationship between relative errors in 

annual rainfall and annual discharges 

b) The errors in rainfall is translated at least the same or 

greater errors in total runoff 

Biemans et 

al. (2009) 

Worldwide a) 294 major river basins 

b) 7 global rainfall products 

c) Annual and seasonal scale 

d) LPJmL model 

a) Relative uncertainty in precipitation is amplified in 

discharge  

b) Propagation of uncertainty in precipitation show 

seasonality  

Nikolopoulos 

et al. (2010) 

Italy 

 

a) Complex terrain basins (100 - 1200 

sq.km) 

b) 4 rainfall products 

c) Single flood event 

d) tRIBS model 

a) Propagation of rainfall errors shows linear behaviour 

b) Dampening or amplification of errors depends on error 

metric, rainfall products and basin size (i.e., strong 

dampening effects for smaller basins) 

Maggioni et 

al. (2013) 

United States a) 5 sub-basins 

b) 3 satellite rainfall products 

c) SREM2D rainfall error model 

d) HL-RDHM model 

a) Relative bias doubles from rainfall to runoff 

b) CMORPH shows more ensemble variability in bias 

propagation 

c) Strong dampening of RMSE for larger basins  

Falck et al. 

(2015) 

Brazil a) 19 sub-basins (5,230 – 764,000 

sq.km) 

b) 4 satellite rainfall products 

c) MHD-INP grid-based model 

d) SREM2D rainfall error model 

a) Errors in rainfall are mostly dampened in simulated 

streamflow 

b) Propagation of errors in rainfall ensembles shows no 

dependency on basin size 

Mei et al. 

(2016) 

Italy a) 16 mountainous basins (255 – 

6,967 sq.km) 

b) 6 rainfall products 

c) ICHYMOD model 

d) Warm and cold months 

a) Systematic errors in rainfall are mostly dampened for 

CMORPH and PERSIANN 

b) Random errors in rainfall are dampened strongly in 

simulated discharge for all products 

c) Temporal correlation in simulated discharge decreases 

with the increase of basin sizes, and for cold seasons 

Wu et al. 

(2017) 

United States a) Single basin (32,381 sq.km) 

b) 9 rainfall products 

c) DRIVE model 

d) Annual, monthly and flood event 

at daily scale 

a) Strong linear relationship between bias in rainfall and 

discharge simulation at annual and monthly scale 

b) Precipitation with less bias or errors tends to have 

higher NSC scores 

c) Good correlation between antecedent precipitation bias 

and streamflow bias at daily scale 

This study United States a) 1548 river basins (55 – 50,642 

sq.km) 

b) 6 global rainfall products 

c) Annual, monthly and seasonal 

scales 

d) Basin classification based on 

climates, topography, basin size 

e) Different error metrics 

f) DRIVE physically-based 

hydrological model 
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 882 

 883 

Table 2. Overview of the precipitation products used in this study. 884 

Products Spatial Res. Temporal Res. Coverage Main Source 

NLDAS-2 0.125° hourly North America Rain-gauges 

TMPA-3B42RT V7 0.25° 3–hourly 50°S–50°N Satellites 

TMPA-3B42 V7 0.25° 3–hourly 50°S–50°N Satellites 

Stage IV 4-km hourly CONUS Radars 

CPC-U V1.0/RT 0.25° daily Global Land Rain-gauges 

MERRA-2 0.625° hourly Global Reanalysis 

MSWEP-2.2 0.07° 30-min Global Reanalysis 
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 899 

Table 3. Characteristics of Köppen climate regimes in precipitation, temperature, and 900 
hydrology. 901 

Köppen 

Class 
Precipitation Temperature Hydrological Description 

Dry 

(cold semi-arid) 

Average annual 

precipitation is around 400 

mm, and strong seasonality 

in precipitation 

Average annual 

temperature above 18 °C 

Snow storage causes a 

delay in the streamflow; 

large storage variations 

over the year 

Temperate 

(humid subtropical) 

Average annual 

precipitation is around 

1000 mm; no significant 

precipitation difference 

between seasons; no dry 

months in the summer 

At least one month's 

average temperature 

above 22 °C; and at least 

four months averaging 

above 10 °C 

 

Catchment have soil water 

storage variations and a 

slightly seasonal 

streamflow regime with 

low flows during summer 

Continental 

(humid continental) 

Average annual 

precipitation is higher than 

1000 mm; no significant 

precipitation difference 

between seasons 

Combination of hot 

summers and snowy 

winters; the warmest 

month of greater than 

22 °C, the coldest month 

of below 0 °C 

Catchments have small 

soil water storage 

variations and a fairly 

constant seasonal 

streamflow regime 

902 
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 916 

 917 

Figure 1. Maps of (a) elevation across the CONUS, (b) spatial distributions of GAGES-II 

sites matching with selecting criteria, (c) the Köppen’s climate type and (d) MRVBF class of 

final selected 1,548 river basins. 
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Figure 2. Maps of (a) mean annual precipitation (2002-2013) estimated by NLDAS-2 and its 

hydrological performance with (b) NSE, (c) relative ABIAS (r_ABIAS), and (d) relative 

RMSE (r_RMSE) against the USGS observations at annual timescale. 
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Figure 3. Normalized precipitation bias (%) in mean annual precipitation estimated by 

different PQEs with respect to the reference QPE (NLDAS-2) over the CONUS. 
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Figure 4. Scatter plot of the relative RMSE (r_RMSE) in precipitation against the r_RMSE in 

estimated discharges at annual (blue) and monthly (grey) timescales, respectively. 
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Figure 5. Scatter plot of the relative ABIAS (r_ABIAS) in precipitation against the NSE 

(ranging between 0 and 1) in estimated discharges at annual and monthly timescales, 

respectively. 
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Figure 6. Violinplot of propagation factors for r_RMSE and r_ABIAS at annual and monthly 

timescale, dots in colors represent the mean of propagation factors for each PQE. 
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Figure 7. Spatial pattern of propagation factor of r_RMSE at annual timescale over 1,548 

river basins. 
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Figure 8. The same as Figure 7, but for monthly timescale. 
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Figure 9. Seasonality in slope and coefficient of determination (𝑟2) of fitted regression line 

for the P-Q error relationship over the basins with different climate types from the 

perspective of r_RMSE. Different seasons are defined as January-March (JFM), April-June 

(AMJ), July-September (JAS) and October-December (OND). 
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Figure 10. Propagation factors of r_RMSE for basins with different climate regimes at 

monthly timescale when considering different discharge magnitudes. 
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Figure 11. Propagation factors of r_RMSE for basins with different climate regimes for 

seasons of April-June (AMJ) and October-December (OND) when considering peak 

discharges (Q ≥ 99thpercentile). 
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Figure 12. Seasonality in slope and coefficient of determination (𝑟2) of fitted regression line 

for the P-Q error relationship over the basins with different climate types and sizes from the 

perspective of r_RMSE, when considering only peak discharges (Q ≥ 99th percentile). 

Seasons are defined as January-March (JFM), April-June (AMJ), July-September (JAS) and 

October-December (OND). 
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Figure 13. Propagation factors of r_RMSE for basins with different size and MRVBF classes 

for peak discharges (Q ≥ 99th percentile) during the OND season. The horizontal line 

indicates the propagation factors of one, while white dots represent the mean value. 
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Figure 14. The same as Figure 13, but for the AMJ season. 
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