19 research outputs found

    ATRX loss in pediatric glioma results in epigenetic dysregulation of G2/M checkpoint maintenance and sensitivity to ATM inhibition

    Get PDF
    ATRX is a histone chaperone protein recurrently mutated in pediatric glioma. The mechanism which mediates the proliferative advantage of ATRX loss in pediatric glioma remains unexplained. Recent data revealed a distinct pattern of DNA binding sites of the ATRX protein using ChIP-seq in mouse neuronal precursor cells (mNPCs). Using the ATRX peaks identified in p53-/- mNPCs, we confirmed that ATRX binding sites were significantly enriched in gene promoters (p \u3c 0.0001) and CpG islands (p \u3c 0.0001) compared with random regions. Gene set enrichment (GSE) analysis identified that cell cycle and regulation of cell cycle were among the most significantly enriched gene sets (p=2.52e-16 and 1.61e-9, respectively). We found that ATRX loss resulted in dysfunction of G2/M checkpoint maintenance: (1) ATRX-deficient pediatric glioblastoma (GBM) cells exhibited a seven-fold increase in mitotic index at 16 hours after sub-lethal radiation, and (2) murine GBM cells with ATRX knockdown demonstrated impaired pChk1 signaling on western blot at multiple time points after radiation compared to controls (p=0.0187). Notably, the ATM signaling (pChk2) remained intact in those cells, suggesting a potential therapeutic target. ATRX-deficient mouse cells were uniquely sensitive to ATM inhibitors at 1 uM alongside 8 Gy radiation compared to controls with intact ATRX (AZD0156: p=0.0027 and AZD01390: p=0.0436). Mice intra-cranially implanted with ATRX-deficient GBM cells showed improved survival (n=10, p=0.0018) when treated with AZD0156 combined with radiation. Our findings suggest that ATRX loss in glioma results in unique sensitivity to ATM inhibition via epigenetic dysregulation of G2/M checkpoint maintenance

    TIM-3 blockade in diffuse intrinsic pontine glioma models promotes tumor regression and antitumor immune memory

    Get PDF
    Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain stem tumor and the leading cause of pediatric cancer-related death. To date, these tumors remain incurable, underscoring the need for efficacious therapies. In this study, we demonstrate that the immune checkpoint TIM-3 (HAVCR2) is highly expressed in both tumor cells and microenvironmental cells, mainly microglia and macrophages, in DIPG. We show that inhibition of TIM-3 in syngeneic models of DIPG prolongs survival and produces long-term survivors free of disease that harbor immune memory. This antitumor effect is driven by the direct effect of TIM-3 inhibition in tumor cells, the coordinated action of several immune cell populations, and the secretion of chemokines/cytokines that create a proinflammatory tumor microenvironment favoring a potent antitumor immune response. This work uncovers TIM-3 as a bona fide target in DIPG and supports its clinical translation

    Identification of Hot Spots in the Variola Virus Complement Inhibitor (SPICE) for Human Complement Regulation▿

    No full text
    Variola virus, the causative agent of smallpox, encodes a soluble complement regulator named SPICE. Previously, SPICE has been shown to be much more potent in inactivating human complement than the vaccinia virus complement control protein (VCP), although they differ only in 11 amino acid residues. In the present study, we have expressed SPICE, VCP, and mutants of VCP by substituting each or more of the 11 non-variant VCP residues with the corresponding residue of SPICE to identify hot spots that impart functional advantage to SPICE over VCP. Our data indicate that (i) SPICE is ∼90-fold more potent than VCP in inactivating human C3b, and the residues Y98, Y103, K108 and K120 are predominantly responsible for its enhanced activity; (ii) SPICE is 5.4-fold more potent in inactivating human C4b, and residues Y98, Y103, K108, K120 and L193 mainly dictate this increase; (iii) the classical pathway decay-accelerating activity of activity is only twofold higher than that of VCP, and the 11 mutations in SPICE do not significantly affect this activity; (iv) SPICE possesses significantly greater binding ability to human C3b compared to VCP, although its binding to human C4b is lower than that of VCP; (v) residue N144 is largely responsible for the increased binding of SPICE to human C3b; and (vi) the human specificity of SPICE is dictated primarily by residues Y98, Y103, K108, and K120 since these are enough to formulate VCP as potent as SPICE. Together, these results suggest that principally 4 of the 11 residues that differ between SPICE and VCP partake in its enhanced function against human complement

    Mapping of Functional Domains in Herpesvirus Saimiri Complement Control Protein Homolog: Complement Control Protein Domain 2 Is the Smallest Structural Unit Displaying Cofactor and Decay-Accelerating Activities▿

    No full text
    Herpesvirus saimiri encodes a functional homolog of human regulator-of-complement-activation proteins named CCPH that inactivates complement by accelerating the decay of C3 convertases and by serving as a cofactor in factor I-mediated inactivation of their subunits C3b and C4b. Here, we map the functional domains of CCPH. We demonstrate that short consensus repeat 2 (SCR2) is the minimum domain essential for classical/lectin pathway C3 convertase decay-accelerating activity as well as for factor I cofactor activity for C3b and C4b. Thus, CCPH is the first example wherein a single SCR domain has been shown to display complement regulatory functions

    Single vs. combination immunotherapeutic strategies for glioma

    Get PDF
    Introduction: Malignant gliomas are highly invasive tumors, associated with a dismal survival rate despite standard of care, which includes surgical resection, radiotherapy and chemotherapy with temozolomide (TMZ). Precision immunotherapies or combinations of immunotherapies that target unique tumor-specific features may substantially improve upon existing treatments. Areas covered: Clinical trials of single immunotherapies have shown therapeutic potential in high-grade glioma patients, and emerging preclinical studies indicate that combinations of immunotherapies may be more effective than monotherapies. In this review, the authors discuss emerging combinations of immunotherapies and compare efficacy of single vs. combined therapies tested in preclinical brain tumor models. Expert opinion: Malignant gliomas are characterized by a number of factors which may limit the success of single immunotherapies including inter-tumor and intra-tumor heterogeneity, intrinsic resistance to traditional therapies, immunosuppression, and immune selection for tumor cells with low antigenicity. Combination of therapies which target multiple aspects of tumor physiology are likely to be more effective than single therapies. While a limited number of combination immunotherapies are described which are currently being tested in preclinical and clinical studies, the field is expanding at an astounding rate, and endless combinations remain open for exploration.Fil: Chandran, Mayuri. University of Michigan; Estados UnidosFil: Candolfi, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Shah, Diana. University of Michigan; Estados UnidosFil: Mineharu, Yohei. Kyoto University; JapónFil: Yadav, Viveka Nand. University of Michigan; Estados UnidosFil: Koschmann, Carl. University of Michigan; Estados UnidosFil: Asad, Antonela Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Lowenstein, Pedro R.. University of Michigan; Estados UnidosFil: Castro, Maria Gabriela. University of Michigan; Estados Unido

    CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study

    No full text
    Glioblastoma (GBM) is a highly invasive brain tumor. Perivascular invasion, autovascularization and vascular co-option occur throughout the disease and lead to tumor invasion and progression. The molecular basis for perivascular invasion, i.e., the interaction of glioma tumor cells with endothelial cells is not well characterized. Recent studies indicate that glioma cells have increased expression of CXCR4. We investigated the in-vivo role of CXCR4 in perivascular invasion of glioma cells using shRNA-mediated knock down of CXCR4. We show that primary cultures of human glioma stem cells HF2303 and mouse glioma GL26-Cit cells exhibit significant migration towards human (HBMVE) and mouse (MBVE) brain microvascular endothelial cells. Blocking CXCR4 on tumor cells with AMD3100 in-vitro, inhibits migration of GL26-Cit and HF2303 toward MBVE and HBMVE cells. Additionally, genetic down regulation of CXCR4 in mouse glioma GL26-Cit cells inhibits their in-vitro migration towards MBVE cells; in an in-vivo intracranial mouse model, these cells display reduced tumor growth and perivascular invasion, leading to increased survival. Quantitative analysis of brain sections showed that CXCR4 knockdown tumors are less invasive. Lastly, we tested the effects of radiation on CXCR4 knock down GL26-Cit cells in an orthotopic brain tumor model. Radiation treatment increased apoptosis of CXCR4 downregulated tumor cells and prolonged median survival. In summary, our data suggest that CXCR4 signaling is critical for perivascular invasion of GBM cells and targeting this receptor makes tumors less invasive and more sensitive to radiation therapy. Combination of CXCR4 knock down and radiation treatment might improve the efficacy of GBM therapy
    corecore