12 research outputs found

    Allelic frequency of PON1 Q192R, CYP2C19*2 and CYP2C19*17 among Jordanian patients taking clopidogrel

    Get PDF
    Purpose: To investigate the influence of allelic frequencies of PON1 Q192R, CYP2C19*2 and CYP2C19*17 genetic polymorphisms on the response to clopidogrel among Jordanian patients.Methods: Polymorphisms in CYP2C19 were assessed among 148 patients using PCR-RFLP assay.Results: The CYP2C19*2, CYP2C19*17, and PON1 Q192R allele frequencies were 9.8, 28.72 and 28.7 %, respectively. On the genotyping side, the frequencies of CYP2C19*1/1* and CYP2C19*1/2* were 80.4 and 19.6 %, respectively, but none of the patients had CYP2C19*2/2* genotype. The genotype frequencies CYP2C19*17 were 47.97, 46.62 and 5.41 % for wild-type C-C, heterozygote C-T, and the mutant T-T, respectively. PON1 genotype was 42.7 % for QQ, and 57.8 % for QR. None of the patients had RR genotype.Conclusion: Relative to other populations, the observed allelic frequencies are consistent with the values reported for Caucasian and Middle Eastern populations.Keywords: CYP2C9 polymorphisms, Clopidogrel, Genotype, Allele frequency, PON1 gene

    The laboratory parameters in predicting the severity and death of COVID-19 patients: Future pandemic readiness strategies

    Get PDF
    The range of clinical manifestations associated with the infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encompasses a broad spectrum, ranging from flu-like symptoms to the occurrence of multiple organ failure and death. The severity of the coronavirus disease 2019 (COVID-19) is categorized based on clinical presentation and is divided into three distinct levels of severity identified as non-severe, severe, and critical. Although individuals of all age groups are susceptible to SARS-CoV-2 infection, middle-aged and older adults are more frequently impacted, with the latter being more likely to develop severe illness. Various laboratory characteristics observed in hospitalized COVID-19 patients have been correlated with adverse outcomes. These include elevated levels of D-dimer, liver enzymes, lactate dehydrogenase, C-reactive protein, ferritin, prothrombin time, and troponin, as well as decreased lymphocyte and platelets counts. This review investigated the relationship between baseline clinical characteristics, initial laboratory parameters upon hospital admission, and the severity of illness and mortality rates among COVID-19 patients. Although the COVID-19 pandemic has concluded, understanding the laboratory predictors of virus severity and mortality remains crucial, and examining these predictors can have long-term effects. Such insights can help healthcare systems manage resources more effectively and deliver timely and appropriate care by identifying and targeting high-risk individuals. This knowledge can also help us better prepare for future pandemics. By examining these predictors, we can take steps to protect public health and mitigate the impact of future pandemics

    OntoBioethics: A framework for the agile development of bioethics ontologies in pandemics, applied to COVID-19

    Get PDF
    Background: Few ontological attempts have been reported for conceptualizing the bioethics domain. In addition to limited scope representativeness and lack of robust methodological approaches in driving research design and evaluation of bioethics ontologies, no bioethics ontologies exist for pandemics and COVID-19. This research attempted to investigate whether studying the bioethics research literature, from the inception of bioethics research publications, facilitates developing highly agile, and representative computational bioethics ontology as a foundation for the automatic governance of bioethics processes in general and the COVID-19 pandemic in particular. Research Design: The iOntoBioethics agile research framework adopted the Design Science Research Methodology. Using systematic literature mapping, the search space resulted in 26,170 Scopus indexed bioethics articles, published since 1971. iOntoBioethics underwent two distinctive stages: (1) Manually Constructing Bioethics (MCB) ontology from selected bioethics sources, and (2) Automatically generating bioethics ontological topic models with all 26,170 sources and using special-purpose developed Text Mining and Machine-Learning (TM&ML) engine. Bioethics domain experts validated these ontologies, and further extended to construct and validate the Bioethics COVID-19 Pandemic Ontology. Results: Cross-validation of the MCB and TM&ML bioethics ontologies confirmed that the latter provided higher-level abstraction for bioethics entities with well-structured bioethics ontology class hierarchy compared to the MCB ontology. However, both bioethics ontologies were found to complement each other forming a highly comprehensive Bioethics Ontology with around 700 concepts and associations COVID-19 inclusive. Conclusion: The iOntoBioethics framework yielded the first agile, semi-automatically generated, literature-based, and domain experts validated General Bioethics and Bioethics Pandemic Ontologies Operable in COVID-19 context with readiness for automatic governance of bioethics processes. These ontologies will be regularly and semi-automatically enriched as iOntoBioethics is proposed as an open platform for scientific and healthcare communities, in their infancy COVID-19 learning stage. iOntoBioethics not only it contributes to better understanding of bioethics processes, but also serves as a bridge linking these processes to healthcare systems. Such big data analytics platform has the potential to automatically inform bioethics governance adherence given the plethora of developing bioethics and COVID-19 pandemic knowledge. Finally, iOntoBioethics contributes toward setting the first building block for forming the field of “Bioethics Informatics”

    Genetic variants of vascular endothelial growth factor-634 and vascular endothelial growth factor-936 in Circassians and Chechens subpopulations in Jordan

    No full text
    Background: Vascular endothelial growth factor (VEGF) is a signaling protein that promotes the growth of new blood vessels in vasculogenesis and angiogenesis. The most important member of VEGF family is VEGF-A which bind to VEGFR-1 and VEGFR-2 and plays a major role in diseases that involve blood vessels such as Tumor Angiogenesis, Age-related Macular Degeneration (AMD) and Diabetic Retinopathy (DR). Objective: Studying the interindividual variability in VEGF by determining the allele frequency for certain genetic polymorphisms of VEGF-936 and VEGF-634 genes in two subpopulations in Jordan; Circassians and Chechens, as well as comparing the allele frequencies with other populations, including Jordanian Arabs. Methods: 319 unrelated healthy Circassian and Chechen individuals were genotyped for VEGF-936 and VEGF-634 by using PCR and RFLP. Results: We found that Circassians did not have any significant difference in allele frequencies of VEGF-634 compared to the Jordanian Arab population and all three populations had similar frequencies of VEGF-936. Conclusion: These findings provide genetic information that may serve as a basis for larger studies designed to assess variability associated with VEGF polymorphisms. They also provide important data for the implementation of personalized medicine in Circassians and Chechens populations living in Jordan
    corecore