20 research outputs found

    Lithium and Valproate Levels Do Not Correlate with Ketamine’s Antidepressant Efficacy in Treatment-Resistant Bipolar Depression

    Get PDF
    Ketamine and lithium both inhibit glycogen synthase kinase 3. In addition, lithium and ketamine have synergistic antidepressant-like effects at individually subeffective doses in rodents. We hypothesized that ketamine’s antidepressant effects would be improved by therapeutic doses of lithium versus valproate and that serum lithium levels would positively correlate with ketamine’s antidepressant efficacy. Thirty-six patients with treatment-resistant bipolar depression maintained on therapeutic-dose lithium (n=23, 0.79 ± 0.15 mEq/L) or valproate (n=13, 79.6 ± 12.4 mg/mL) received 0.5 mg/kg ketamine infusion in a randomized, double-blind, placebo-controlled, crossover trial. The primary depression outcome measure—the Montgomery-Åsberg Depression Rating Scale (MADRS)—was assessed before infusion and at numerous postinfusion time points. Both lithium (F1,118 = 152.08, p<0.001, and d=2.27) and valproate (F1,128 = 20.12, p<0.001, and d=0.79) significantly improved depressive symptoms, but no statistically significant difference was observed between mood stabilizer groups (F1,28 = 2.51, p=0.12, and d=0.60). Serum lithium and valproate levels did not correlate with ketamine’s antidepressant efficacy. Although the study was potentially underpowered, our results suggest that lithium may not potentiate ketamine’s antidepressant efficacy in treatment-resistant bipolar depression

    Electronic Nicotine-Delivery Systems for Smoking Cessation.

    Get PDF
    Background: Electronic nicotine-delivery systems - also called e-cigarettes - are used by some tobacco smokers to assist with quitting. Evidence regarding the efficacy and safety of these systems is needed. Methods: In this open-label, controlled trial, we randomly assigned adults who were smoking at least five tobacco cigarettes per day and who wanted to set a quit date to an intervention group, which received free e-cigarettes and e-liquids, standard-of-care smoking-cessation counseling, and optional (not free) nicotine-replacement therapy, or to a control group, which received standard counseling and a voucher, which they could use for any purpose, including nicotine-replacement therapy. The primary outcome was biochemically validated, continuous abstinence from smoking at 6 months. Secondary outcomes included participant-reported abstinence from tobacco and from any nicotine (including smoking, e-cigarettes, and nicotine-replacement therapy) at 6 months, respiratory symptoms, and serious adverse events. Results: A total of 1246 participants underwent randomization; 622 participants were assigned to the intervention group, and 624 to the control group. The percentage of participants with validated continuous abstinence from tobacco smoking was 28.9% in the intervention group and 16.3% in the control group (relative risk, 1.77; 95% confidence interval, 1.43 to 2.20). The percentage of participants who abstained from smoking in the 7 days before the 6-month visit was 59.6% in the intervention group and 38.5% in the control group, but the percentage who abstained from any nicotine use was 20.1% in the intervention group and 33.7% in the control group. Serious adverse events occurred in 25 participants (4.0%) in the intervention group and in 31 (5.0%) in the control group; adverse events occurred in 272 participants (43.7%) and 229 participants (36.7%), respectively. Conclusions: The addition of e-cigarettes to standard smoking-cessation counseling resulted in greater abstinence from tobacco use among smokers than smoking-cessation counseling alone. (Funded by the Swiss National Science Foundation and others; ESTxENDS ClinicalTrials.gov number, NCT03589989.)
    corecore