2,634 research outputs found

    Interacting heavy fermions in a disordered optical lattice

    Full text link
    We have theoretically studied the effect of disorder on ultracold alkaline-earth atoms governed by the Kondo lattice model in an optical lattice via simplified double-well model and hybridization mean-field theory. Disorder-induced narrowing and even complete closure of hybridization gap have been predicted and the compressibility of the system has also been investigated for metallic and Kondo insulator phases in the presence of the disordered potential. To make connection to the experimental situation, we have numerically solved the disordered Kondo lattice model with an external harmonic trap and shown both the melting of Kondo insulator plateau and an compressibility anomaly at low-density

    Cyclotron Dynamics of a Kondo Singlet in a Spin-Orbit-Coupled Alkaline-Earth Atomic Gas

    Full text link
    We propose a scheme to investigate the interplay between Kondo-exchange interaction and quantum spin Hall effect with ultracold fermionic alkaline-earth atoms trapped in two-dimensional optical lattices using ultracold collision and laser-assisted tunneling. In the strong Kondo-coupling regime, though the loop trajectory of the mobile atom disappears, collective dynamics of an atom pair in two clock states can exhibit an unexpected spin-dependent cyclotron orbit in a plaquette, realizing the quantum spin Hall effect of the Kondo singlet. We demonstrate that the collective cyclotron dynamics of the spin-zero Kondo singlet is governed by an effective Harper-Hofstadter model in addition to second-order diagonal tunneling

    Analysis of Molecule Harvesting by Heterogeneous Receptors on MC Transmitters

    Full text link
    This paper designs a molecule harvesting transmitter (TX) model, where the surface of a spherical TX is covered by heterogeneous receptors with different sizes and arbitrary locations. If molecules hit any receptor, they are absorbed by the TX immediately. Within the TX, molecules are stored in vesicles that are continuously generated and released by the TX via the membrane fusion process. Considering a transparent receiver (RX) and molecular degradation during the propagation from the TX to the RX, we derive the molecule release rate and the fraction of molecules absorbed by the TX as well as the received signal at the RX. Notably, this analytical result is applicable for different numbers, sizes, and locations of receptors, and its accuracy is verified via particle-based simulations. Numerical results show that different vesicle generation rates result in the same number of molecules absorbed by the TX, but different peak received signals at the RX.Comment: 7 pages, 4 figures. This work has been accepted by IEEE GLOBECOM 2023. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Noise suppression of on-chip mechanical resonators by chaotic coherent feedback

    Full text link
    We propose a method to decouple the nanomechanical resonator in optomechanical systems from the environmental noise by introducing a chaotic coherent feedback loop. We find that the chaotic controller in the feedback loop can modulate the dynamics of the controlled optomechanical system and induce a broadband response of the mechanical mode. This broadband response of the mechanical mode will cut off the coupling between the mechanical mode and the environment and thus suppress the environmental noise of the mechanical modes. As an application, we use the protected optomechanical system to act as a quantum memory. It's shown that the noise-decoupled optomechanical quantum memory is efficient for storing information transferred from coherent or squeezed light

    A Switched Approach to Robust Stabilization of Multiple Coupled Networked Control Systems

    Get PDF
    This paper proposes a switched approach to robust stabilization of a collection of coupled networked controlled systems (NCSs) with node devices acting over a limited communication channel. We suppose that the state information of every subsystem is split into different packets and only one packet of the subsystem can be transmitted at a time. Multiple NCSs with norm-bounded parameter uncertainties and multiple transmissions are modeled as a periodic switched system in this paper. State feedback controllers can be constructed in terms of linear matrix inequalities. A numerical example is given to show that a collection of uncertain NCSs with the problem of limited communication can be effectively stabilized via the designed controller

    Modeling User Viewing Flow using Large Language Models for Article Recommendation

    Full text link
    This paper proposes the User Viewing Flow Modeling (SINGLE) method for the article recommendation task, which models the user constant preference and instant interest from user-clicked articles. Specifically, we employ a user constant viewing flow modeling method to summarize the user's general interest to recommend articles. We utilize Large Language Models (LLMs) to capture constant user preferences from previously clicked articles, such as skills and positions. Then we design the user instant viewing flow modeling method to build interactions between user-clicked article history and candidate articles. It attentively reads the representations of user-clicked articles and aims to learn the user's different interest views to match the candidate article. Our experimental results on the Alibaba Technology Association (ATA) website show the advantage of SINGLE, which achieves 2.4% improvements over previous baseline models in the online A/B test. Our further analyses illustrate that SINGLE has the ability to build a more tailored recommendation system by mimicking different article viewing behaviors of users and recommending more appropriate and diverse articles to match user interests.Comment: 8 pages

    Socioeconomic impacts of innovative dairy supply chain practices. The case of the Laiterie du Berger in the Senegalese Sahel

    Full text link
    This study analyzes the Laiterie Du Berger (LDB)'s milk supply chain and its contribution to strengthening the food security and socioeconomic resources of Senegalese Sahelian pastoral households. Porter's value chain model is used to characterize the innovations introduced by the LDB dairy in its milk inbound logistics and supplier relationships. A socioeconomic food security index and qualitative data are used to assess the dairy's supply chain's contribution to strengthen smallholder households' livelihoods. Data for this research were obtained through individual surveys, focus groups and in-depth interviews of LDB managers and milk suppliers. Results show that milk income contributes significantly to household food security. Suppliers who stabilize their dairy income between rainy and dry seasons, diversify income sources and have larger herds are more likely to remain food secure. The LDB innovations contribute by helping herders access biophysical and economic resources, leading to better livestock feed and household food security. (Résumé d'auteur
    • …
    corecore