1,978 research outputs found

    Pentaquark states with the QQQqqˉQQQq\bar{q} configuration in a simple model

    Full text link
    We discuss the mass splittings for the SS-wave triply heavy pentaquark states with the QQQqqˉQQQq\bar{q} (Q=b,c;q=u,d,s)(Q=b,c;q=u,d,s) configuration which is a mirror structure of QQˉqqqQ\bar{Q}qqq. The latter configuration is related with the nature of Pc(4380)P_c(4380) observed by the LHCb Collaboration. The considered pentaquark masses are roughly estimated with a simple method. One finds that such states are probably not narrow even if they do exist. This leaves room for molecule interpretation for a state around the low-lying threshold of a doubly heavy baryon and a heavy-light meson, e.g. ΞccD\Xi_{cc}D, if it were observed. As a by product, we conjecture that upper limits for the masses of the conventional triply heavy baryons can be determined by the masses of the conventional doubly heavy baryons.Comment: 19 pages, 1 figure, 10 tables; Version accepted by Eur. Phys. J.

    Noise suppression of on-chip mechanical resonators by chaotic coherent feedback

    Full text link
    We propose a method to decouple the nanomechanical resonator in optomechanical systems from the environmental noise by introducing a chaotic coherent feedback loop. We find that the chaotic controller in the feedback loop can modulate the dynamics of the controlled optomechanical system and induce a broadband response of the mechanical mode. This broadband response of the mechanical mode will cut off the coupling between the mechanical mode and the environment and thus suppress the environmental noise of the mechanical modes. As an application, we use the protected optomechanical system to act as a quantum memory. It's shown that the noise-decoupled optomechanical quantum memory is efficient for storing information transferred from coherent or squeezed light

    Exact Boundary Derivative Formulation for Numerical Conformal Mapping Method

    Get PDF
    Conformal mapping is a useful technique for handling irregular geometries when applying the finite difference method to solve partial differential equations. When the mapping is from a hyperrectangular region onto a rectangular region, a specific length-to-width ratio of the rectangular region that fitted the Cauchy-Riemann equations must be satisfied. In this research, a numerical integral method is proposed to find the specific length-to-width ratio. It is conventional to employ the boundary integral method (BIEM) to perform the conformal mapping. However, due to the singularity produced by the BIEM in seeking the derivatives on the boundaries, the transformation Jacobian determinants on the boundaries have to be evaluated at inner points instead of directly on the boundaries. This approximation is a source of numerical error. In this study, the transformed rectangular property and the Cauchy-Riemann equations are successfully applied to derive reduced formulations of the derivatives on the boundaries for the BIEM. With these boundary derivative formulations, the Jacobian determinants can be evaluated directly on the boundaries. Furthermore, the results obtained are more accurate than those of the earlier mapping method

    New Approach for Evaluation of a Watershed Ecosystem Service for Avoiding Reservoir Sedimentation and Its Economic Value: A Case Study from Ertan Reservoir in Yalong River, China

    Get PDF
    A model was established to simulate an ecosystem service of avoiding reservoir sedimentation and its economic value based on the process of sediment delivery in a watershed. The model included fabricating the watershed of the study reservoir. The sediment retention coefficient of different land cover types were used to simulate the spatial patterns of the annual quantity of the sediment that were prevented from entering the reservoir by the vegetation in each cell followed the flow path in watershed. The economic value of the ecosystem service in this model was determined by the marginal cost of reservoir desilting. This study took the Ertan reservoir as an example. The results showed that most eroded soil was intercepted by different types of ecosystems in the process of sediment delivery in a watershed. The region with a higher quantity of sediment retention was around the reservoir. The absolute quantity of average sediment retention in forestland was lower, so the sediment retention ability of forestland failed to be brought into fullest play in watershed

    Evidence of Decreased Activity in Intermediate-Conductance Calcium-Activated Potassium Channels During Retinoic Acid–Induced Differentiation in Motor Neuron–Like NSC-34 Cells

    Get PDF
    Background/Aims: Intermediate-conductance Ca2+-activated K+ (IKCa; KCa3.1 or KCNN4) channels affect the behaviors of central neurons including motor neurons. The mechanism through which neuronal differentiation is related to the activity of these channels remains largely unclear. Methods: By using various molecular biology tools and electrophysiological measurements, we investigated possible changes in the activity of IKCa channels in a retinoic acid (RA)-induced differentiation process in motor neuron-like NSC-34 cells. Results: The protein and messenger RNA expression of KCa3.1 substantially diminished as NSC-34 cells were differentiated with low serum (1%) and 1 µM RA. In whole-cell current recordings, the density of delayed-rectifier K+ currents obtained from differentiated cells was elevated. However, the density of a ramp pulse-elicited K+ current that was sensitive to blockage by 1-((2-chlorophenyl) (diphenyl)methyl)-1H-pyrazole (TRAM-34)—an inhibitor of IKCa channels—was significantly higher in undifferentiated NSC-34 cells than in differentiated cells. In undifferentiated cells, the activity of IKCa channels was readily detected and the probability of channel openings was resistant to stimulation by diazoxide or suppression by verruculogen. Furthermore, this probability was increased by 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one or 9-phenanthrol and reduced by TRAM-34. The channel-opening probability decreased in RA-induced differentiated cells, whereas the single-channel conductance of IKCa channels did not differ between undifferentiated and differentiated cells. Moreover, the slow component of the mean closed time in these channels was significantly shorter in undifferentiated cells than in differentiated cells; however, the mean open time in the channel remained unchanged as cells were differentiated. Conclusion: RA-induced differentiation in neurons could exert a suppressive effect on the activity of IKCa channels
    • …
    corecore