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Based on the factors of meteorology and topography, it is assumed that there exist some certain patterns in spatial and temporal
rainfall distribution of a watershed. A typhoon rainfall forecastingmodel is developed under this assumption. If rainfall patterns can
be analyzed and recognized in terms of individual watershed topography, only the spatial rainfall distribution prior to a specific
moment is needed to forecast the rainfall in the next coming hours. It does not need any other condition in meteorology and
climatology. Besides, supplement techniques ofmissing rainfall gage data are also considered to build an all-purpose forecastmodel.
By integrating techniques of cluster analysis and pattern recognition, present proposed rainfall forecasting model is tested using
historical data of Tamsui River Basin in Northern Taiwan. Good performance is validated by checking on coefficient of correlation
and coefficient of efficiency.

1. Introduction

Typhoon rainfall forecast is extremely important since it is the
basic requirement in flood routing simulation using a hydro-
logic model, allowing an extension of the lead-time of the
river flow forecasting computations. It is particularly needed
in small- and medium-sized mountainous basins [1]. In
Taiwan, due to the high mountains and steep river slopes,
heavy rainfalls, especially during typhoon events, have fre-
quently led to serious disasters, such as flooding, landslide,
or debris flows. In order to reduce loss of life and major eco-
nomic impacts, the government has invested a great deal of
manpower and budgets to build the disaster warning systems
in which rainfall forecast plays a key role. It provides rainfall
input data to forecast the surface runoff outflow of a water-
shed.This outflowor the gagedwater depth at the outlet of the
watershed is also needed as the information for the upstream
boundary condition of unsteady river flow computations [2–
4]. Quite often, whenever a typhoon has occurred, undesired
conditions may occur when gaged rainfall data do not trans-
mit into database system at all for further computational uses.
Furthermore, lack of immediate rainfall data may affect the

accuracy in real-time flood forecasting or other systems. In
order to deal with such situation, the authority should not
only assure the stability of an observation system and its
transmission instruments but also build an all-purpose rain-
fall forecast model to manage the situation of lost data at
any moment and provide reasonably accurate and efficient
forecast data.

Traditionally, rainfall forecasting is based mainly on
numerical fluid dynamic models [5]. This classical approach
attempts to model the fluid and thermal dynamic systems
for grid-point time series prediction based on boundary
meteorological data. The simulation often requires intensive
computations involving complex differential equations and
computational algorithms. Besides, the accuracy is bounded
by certain constraints such as the adoption of incomplete
boundary conditions, model assumptions, grid resolutions,
and numerical instabilities. Furthermore, because of the high
variability in space and time, typhoon rainfall is one of the
most difficult elements for the hydrologic cycle to forecast.
The highly nonlinear and extremely complex physical process
of typhoon rainfall also leads to a lot of difficulties in
constructing a physically based mathematical model [6].
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Radar data and satellite images were also used to forecast
the rainfall [7, 8]. Unfortunately, the relationship between
rainfall and the outputs from satellite and radar images
was not clear while the outputs do not allow a satisfactory
assessment of rain intensities [1]. Another reasonwas that due
to ground occultation and altitude effects, the radar detection
was particularly difficult in mountainous regions [9, 10].

In recent decades, the research using artificial intelligence
has gained scientific attention.The Artificial Neural Network
(ANN) is one of the most representatives of these achieve-
ments. Researches using ANNs were sequentially reported.
Luk et al. [11] assumed that the spatial rainfall distribution at
a specificmoment is bounded with the records of the relevant
rainfall gages in the lasted time interval. By using a backward
propagation neural network (BP-ANN), they successfully
built a model for forecasting the rainfall pattern in the next
coming 15 minutes. The same concept was used to build
another rainfall forecasting model by applying other kinds of
neural networks such as feedforward neural network, partial
recurrent network, and time delayed neural network [12].
Toth et al. [1] compared the accuracy of the short-term rain-
fall forecasts obtained with three time series analysis tech-
niques, such as linear stochastic autoregressive moving aver-
age (ARMA) models, artificial neural networks (ANNs), and
the nonparametric nearest-neighbors method. Chang et al.
[13] compared and discussed three types of multistep-ahead
(MSA) methods using previous rainfall and river stage for
flood forecasting. Lin et al. [14] used a novel kind of neural
network called support vector machines (SVMs) to construct
typhoon rainfall forecasting models. They used these models
with and without typhoon characteristics to forecast the
rainfall. Because all the rainfall or flood forecasting models
mentioned above regard the gaged rainfall records in the last
period of time as the input data, thesemodels might not work
properly when data gaps occur.Themodel could not carry on
further computations unless the lost data can be estimated
correctly.

When a storm or frontal surface is approaching, the rain-
fall patterns in the windward areamay be quite different from
those in the leeward area, due to the topographical effects.
As the storm or frontal surface moves during the typhoon
period, the rainfall patterns may alter drastically at a specific
gage location. This implies that the spatial and temporal dis-
tribution of the rainfall are influenced by some information
ofmeteorology and topography. Because the topography does
not change with time and also storms or frontal surfaces
usually move along some certain paths, the trends of spatial-
temporal rainfall distribution could be bounded within some
specific patterns. Based on the consideration of these mete-
orological and climatological factors, it is assumed in this
paper that there exist certain patterns in spatial and temporal
rainfall distribution for a particular river basin. An unsuper-
vised pattern recognitionmethod, which has powerful ability
of fault tolerance, is applied. The clustered construction can
identify the coordinate data from the remainder data even if
the input data are incomplete or have data gaps. The results
from the recognized patterns aremodel outputs.Thesemodel
outputs are used as the input for river runoff or elevation
forecasting at the outlet of the basin.This paper brings up the

pattern recognition and cluster analysis in statistics to classify
the rainfall distribution in space and time from historical
data of similar meteorological and climatological conditions.
This study intends to build an all-purpose model with good
accuracy and reliability for typhoon hourly rainfall forecast.
The model holds good for its design function even with data
gaps in rainfall data.

2. Methodology

2.1. Cluster Analysis. Cluster analysis is the general logic,
formulated as a procedure, by which we objectively group
the entities together on the basis of their similarities and
differences [15]. The objective of data clustering is to employ
certain clustering algorithms to identify clusters consisting
of similar data within a dataset. The original dataset is thus
decomposed into disjoint clusters, with each cluster having a
center to represent the cluster. We can use the cluster centers
to represent the original dataset to achieve the following two
goals, namely, data compression, and computation reduction.
In general, clustering algorithms can be divided into two
types: (1) hierarchical clustering and (2) nonhierarchical
clustering (or called partition clustering). Two sorts of hierar-
chical clustering could be found. They are agglomerative and
divisive ones. For agglomerative hierarchical clustering, the
number of clusters is increased from one until the desired
number of clusters is reached. On the other hand, for divisive
hierarchical clustering, the number of clusters is decreased
from the size of the dataset until the desired number of clus-
ters is reached. For nonhierarchical clustering approaches,
the number of clusters is fixed in advance. And then a number
of iterations are performed to identify the best clusters with
their cluster centers [16].

Many empirical results indicate that the point of adding
nonrandomly selected, nonhierarchical clustering method is
better than the hierarchical clustering method [17]. Mean-
while, in nonhierarchical clustering the number of clusters
should be predetermined and its starting from a randomly
initial partition may cause optimization locally. Therefore,
some algorisms such as two-stage cluster or two-step cluster
were developed by using one or two algorisms above to
increase their advantage and decrease their shortcoming.
The Statistical Product and Service Solutions (SPSS) two-
step cluster will be used in this paper, and below is mainly
drawn from “the support document of SPSS and IBM knowl-
edge center” [18, 19], for completeness. The SPSS two-step
clustering component is a scalable cluster analysis algorithm
designed to handle very large datasets and is well-known
for recent years. The procedure of the cluster is divided into
two steps. In the first step, the records were preclustered into
many small subclusters by a sequential clustering approach.
Thus, the records were scanned one by one and decided if
the current record should merge with the previously formed
clusters or start a new cluster based on the distance criterion.
A modified cluster feature (CF) tree which consists of levels
of nodes was implemented. In the second step, subclusters
resulting from the first step were taken as input and thenwere
grouped into the desired number of clusters by agglomerative
hierarchical clustering method.
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2.2. Pattern Recognition. The concept of “recognition” comes
from themain theory of artificial neural networks.When new
input data comes out, one can determine the category and
the output corresponding to that category immediately. The
network structure requires powerful ability of fault tolerance.
A clustered construction, even if the input data is incomplete,
can still identify the coordinate data from the remainder data
and show which category it belongs to. The key point of pat-
tern recognition in this study is the winner-take-all (WTA)
network. For a group of artificial neurons, the neurons com-
pete with each other. The weight is given as 1 to the winner
neuron, the one who is closest to the input data, and 0 to all
others. This process is known as the winner-take-all.

In this paper, a “pattern” is a multivariable time-space
series. The rainfall record of some lasted time interval at a
specific moment of several gages is combined as an input
vector and the dataset collected from numerous storm events
is divided into some specific groups. This way, not only the
characteristics of rainfall within the space, such as topography
(windward, leeward, altitude, etc.), but also the “behavior”
that they change over time, can be obtained. With these
procedures, amodel of typhoon rainfall forecast can be estab-
lished.The so-called “pattern” is referred to as the rainfall dis-
tribution in time and space with respect to a certain typhoon
category, and “recognition” is the information available to the
corresponding classification categories.

Assume that there is a group of statistical samples.
Each sample is composed of n values and expressed as a
mathematical vector of 𝑛 components:

󳨀⇀𝑥 𝑖 = [𝑥𝑖,1 𝑥𝑖,2 ⋅ ⋅ ⋅ 𝑥𝑖,𝑛]𝑇 , (1)

where 𝑖 is the serial number of a specific sample.
Firstly, the cluster analysis is preceded. In order to

divide these samples into several certain patterns, the neural
network structure of winner-take-all (WTA) is employed to
describe the distribution of samples. The pattern which any
specific sample belongs to can be expressed as

𝑃 (󳨀⇀𝑥 𝑖) =
𝑚

∑
𝑗=1

𝑗𝑓 (󵄩󵄩󵄩󵄩󵄩󳨀⇀𝑥 𝑖 − 󳨀⇀𝑐 𝑗
󵄩󵄩󵄩󵄩󵄩) , (2)

where 𝑃(󳨀⇀𝑥 𝑖) is a natural number that expresses the pattern
to which the 𝑖th sample belongs, 𝑚 denotes the numbers of
classification, and 𝑓(‖󳨀⇀𝑥 𝑖 −󳨀⇀𝑐 𝑗‖) is a binary function, which is
the radial basis function (RBF) used in WTA neural network

𝑓 (󵄩󵄩󵄩󵄩󵄩󳨀⇀𝑥 𝑖 − 󳨀⇀𝑐 𝑗
󵄩󵄩󵄩󵄩󵄩)

= {{
{

1 if 󵄩󵄩󵄩󵄩󵄩󳨀⇀𝑥 𝑖 − 󳨀⇀𝑐 𝑗
󵄩󵄩󵄩󵄩󵄩 = min {󵄩󵄩󵄩󵄩󵄩󳨀⇀𝑥 𝑖 − 󳨀⇀𝑐 𝑘

󵄩󵄩󵄩󵄩󵄩 , 𝑘 = 1, 2, . . . , 𝑚}
0 otherwise,

(3)

where ‖󳨀⇀𝑥 𝑖 − 󳨀⇀𝑐 𝑗‖ = √∑𝑛𝑙=1(𝑥𝑖,𝑙 − 𝑐𝑗,𝑙)2 in which 𝑥𝑖,𝑙 denotes
the 𝑙th component of 󳨀⇀𝑥 𝑖 and 󳨀⇀𝑐 𝑗 represents the center of the𝑗th cluster, which resulted from the approach of two-step
clustering (see Section 2.1):

󳨀⇀𝑐 𝑗 = [𝑐𝑗,1 𝑐𝑗,2 ⋅ ⋅ ⋅ 𝑐𝑗,𝑛]𝑇 . (4)

After completion of classifying the statistical samples, for
any new input, 󳨀⇀𝑥 , one can find which pattern it belongs to by
checking with this formula:

𝑃 (󳨀⇀𝑥) =
𝑚

∑
𝑗=1

𝑗𝑓 (󵄩󵄩󵄩󵄩󵄩󳨀⇀𝑥 − 󳨀⇀𝑐 𝑗
󵄩󵄩󵄩󵄩󵄩) . (5)

Furthermore, a relation between the input data and
output data needs to be constructed. Consider an output data󳨀⇀𝑦 𝑖 which is composed of 𝑛out values; each 󳨀⇀𝑥 𝑖 corresponds to
a specific 󳨀⇀𝑦 𝑖. The output vector is expressed as

󳨀⇀𝑦 𝑖 = [𝑦𝑖,1 𝑦𝑖,2 ⋅ ⋅ ⋅ 𝑦𝑖,𝑛out]𝑇 . (6)

Here 𝑖 is the serial number of a specific sample as previously
defined. After all the samples have been clustered, one can
find the 𝑘th component of the output vector 󳨀⇀𝑦 corresponded
to an input vector 󳨀⇀𝑥 by the following formula:

𝑦𝑘 ≅ 𝑦𝑃(󳨀⇀𝑥),𝑘 =
𝑚

∑
𝑗=1

𝑦𝑗,𝑘𝑓 (󵄩󵄩󵄩󵄩󵄩󳨀⇀𝑥 − 󳨀⇀𝑐 𝑗
󵄩󵄩󵄩󵄩󵄩) , (7)

where 𝑦𝑗,𝑘 represents the 𝑘th component of the 𝑗th output
pattern. If each sample belongs to a certain cluster and the
distances among them are very small, one can determine 𝑦𝑗,𝑘
by using the average value to represent the whole values of
output data:

𝑦𝑗,𝑘 =
∑𝑁𝑖=1 𝑦𝑖,𝑘𝑓 (󵄩󵄩󵄩󵄩󵄩󳨀⇀𝑥 𝑖 − 󳨀⇀𝑐 𝑗

󵄩󵄩󵄩󵄩󵄩)
∑𝑁𝑖=1 𝑓 (󵄩󵄩󵄩󵄩󵄩󳨀⇀𝑥 𝑖 − 󳨀⇀𝑐 𝑗

󵄩󵄩󵄩󵄩󵄩)
, (8)

where𝑁 is the total number of samples.
When new data are added, one can find the cluster centers

as described previously, identify to which pattern this sample
belongs, and may use the relationship between input and
output to predict the corresponding output.

2.3. Model Setup. In practice, the input data, 󳨀⇀𝑥 𝑖, are com-
posed of spatial and temporal information and can be
expressed as follows:

󳨀⇀𝑥 𝑖 = [𝑝1 (𝑡) 𝑝2 (𝑡) ⋅ ⋅ ⋅ 𝑝𝑛𝑅 (𝑡) 𝑝1 (𝑡 − 1) 𝑝2 (𝑡 − 1) ⋅ ⋅ ⋅ 𝑝𝑛𝑅 (𝑡 − 1) ⋅ ⋅ ⋅ 𝑝1 (𝑡 − 𝑛𝑙) 𝑝2 (𝑡 − 𝑛𝑙) ⋅ ⋅ ⋅ 𝑝𝑛𝑅 (𝑡 − 𝑛𝑙)]𝑇 , (9)
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Figure 1: Location of Tamsui River Basin and the 13 rain gages.

where 𝑖 is the serial number of a specific sample and 𝑛𝑙 is the
number of time steps considered in the input pattern. The
subscript of 𝑝 (i.e., 1, 2, . . . , 𝑛𝑅) is the serial number of the
rain gage while 𝑝1(𝑡) denotes the rainfall data at time 𝑡 in
rain gage number 1 and 𝑝1(𝑡 − 𝑛𝑙) denotes the rainfall data
at previous 𝑛𝑙 time steps in the same rain gage. The values of
𝑝2(𝑡), 𝑝2(𝑡 − 1), . . . , 𝑝2(𝑡 − 𝑛𝑙), 𝑝3(𝑡 − 1), . . . , 𝑝𝑛𝑅(𝑡 − 𝑛𝑙) are
all defined in a similar way. And the output data, ⃗𝑦𝑖, can be
expressed as follows:

⃗𝑦𝑖 = [𝑝1 (𝑡 + 1) 𝑝2 (𝑡 + 1) ⋅ ⋅ ⋅ 𝑝𝑛𝑅 (𝑡 + 1)]𝑇 . (10)

In this paper, rainfall records of last (specifically, 𝑛𝑙 = 1)
and present hour are used as the input data to forecast gaged
rainfall in the next hour. So, 󳨀⇀𝑥 𝑖 contains 2 × 𝑛𝑅 components
and ⃗𝑦𝑖 contains 𝑛𝑅 components.

3. Applications

3.1. Study Area. In this paper, the feasibility of this method
is tested to the rainfall forecasting in Tamsui River Basin in
the Northern Taiwan. Tamsui River runs through Taipei, the
capital city of Taiwan, and has a total drainage area of approx-
imately 2726 km2. Due to the peculiar topography, the three
mainly tributaries, Keelung River, Dahan Stream, and Sintain
Stream, converge in Taipei Basin in which there usually
are severe damage during storms and typhoons. Because of

concentration of population (population 6.5×106) and devel-
oped urban and suburban areas, government has invested
a great deal of manpower and budgets to build the flood
warning system. So there are abundant historical observa-
tions of rainfall data. However, when typhoon occurs, the
transmittal systembecomes poor, resulting inmissing rainfall
data. Furthermore, lack of immediate rainfall data may affect
the accuracy in flood forecasting. In order to deal with this
situation, one should not only ensure the stability of observa-
tion systemand transmission instrument but also build an all-
purpose forecast model to manage the situation of lost data at
any moment.

There are many rain gages in Tamsui River Basin. Some
of them, belonging to Water Resources Agency, are opera-
tionally stable and experience fewer situations of lost data.
Therefore, in this paper hourly rainfall data of these rain gages
are used to forecast the gaged rainfall in the next hour. There
are total 16 rainfall gages in Tamsui River Basin which belong
to Water Resources Agency. Three of them were set up after
2001; the other 13 gages have more than 20 years of historical
data. Locations of Tamsui River Basin and these 13 rain gages
are shown in Figure 1. Frequency diagrams and information
of hourly rainfall of the rain gages in Tamsui River Basin
during typhoon events are shown in Figure 2.

3.2. Calibration and Validation of Dataset. After removing
the events with incomplete data, total of 32 typhoon events
which occurred during 1995–2015 were analyzed for this
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Figure 2: Continued.
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Figure 2: Frequency diagrams and information of hourly rainfall of the rain gages in Tamsui River Basin during typhoon events.

study. Each of them caused intense rainfall in Tamsui River
Basin when the typhoon centers passed the vicinity of North-
ern Taiwan.The collected events are separated into two sets of
data, calibration and validation, as listed in Table 1. There are
2175 samples for calibration. Dataset was entered into SPSS
by using two-step clustering component for classification and
log-likelihood option was chosen as the distance measure-
ment. The number of clusters is determined by how many
samples we have and at least how many samples should be
in a cluster. Although choosing more categories may produce
more accurate results, overfitting could also happen if the

dataset is divided into too many clusters. Considering each
cluster should be 10 samples at least and clusters are as many
as possible, the dataset is divided into 22 clusters. Thus,
twenty-two clusters are chosen for the number of clusters in
this application. Table 2 shows the result of the classification.
In this paper, the hourly rainfall data of Typhoon Soudelor
(2015) and Typhoon Dujuan (2015) were chosen as the
validation dataset.

3.3. Supplement of Missed Rainfall Data. The model has
capacity to automatically fill in any missing data within the
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Table 1: The list of typhoon events collected in this study for the model establishment.

Year Event Data condition Choose or not
1996 HERB e � e With complete data
1997 WINNIE e � I Some data lost
1997 AMBER e � � Choose
1998 YANNI I
1998 ZEB I
2000 KAI-TAK I
2000 BILIS e �
2000 PRAPIROON I
2000 XANGSANE e �
2001 TORAJI e �
2001 NARI e �
2002 SINLAKU e �
2004 MINDULLE e �
2004 AERE I � validation
2005 HAITANG e �
2005 MATSA e �
2005 TALIM e �
2005 LONGWANG e �
2006 BILIS e �
2006 KAEMI e �
2007 WUTIP e �
2007 SEPAT e �
2007 WIPHA e �
2007 KROSA e �
2008 KALMAEGI e �
2008 FUNG-WONG e �
2008 SINLAKU e �
2008 JANGMI e �
2009 MORAKOT e �
2012 TEMBIN e �
2012 SAOLA e �
2013 TRAMI e �
2013 KONG-REY e �
2013 FITOW e �
2014 MATMO e �
2015 SOUDELOR e � validation
2015 DUJUAN e � validation

gages. The basic concept of supplement is to arrange the data
of several gages in the catchment in sequence hours to amath-
ematical vector, and historical rainfall records were divided
intom clusters.Thewinner-take-all neural network is used to
build the relationship between samples andm clusters as well.
When part of the input vector data ismissing, one can still use
the remaining information to determine the cluster. Figure 3
shows the flow chart of vector transform when losing data.
Due to lack of data in some stations, the 𝑛-component vector

will be transformed to an 𝑛󸀠-component vector and the com-
putation will be proceeded in remaining 𝑛󸀠 components. By
using the procedure of Figure 3, one can transform 󳨀⇀𝑥 and 󳨀⇀𝑐 𝑗
into

󳨀⇀𝜉 and 󳨀⇀𝜍 𝑗, and pattern number can be judged by the
following formula:

𝑃(󳨀⇀𝜉 ) =
𝑚

∑
𝑗=1

𝑗𝑓 (󵄩󵄩󵄩󵄩󵄩󵄩󵄩
󳨀⇀𝜉 − 󳨀⇀𝜍 𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩) . (11)
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Table 3: Coefficients of correlation and efficiency in the dataset of calibration.

Shimen Dabao Fushan Datongshan Pinglin Jhongjheng
Bridge Wudu Zhuzihu Bihu Shiding Sanxia Ruifang Huoshaoliao Average

CC 0.66 0.82 0.84 0.84 0.82 0.73 0.81 0.84 0.81 0.82 0.75 0.75 0.84 0.79
CE 0.5 0.58 0.65 0.62 0.56 0.49 0.56 0.64 0.54 0.57 0.5 0.5 0.6 0.55

n󳰀 = 0

l = 1

xl = lost data
yes

no

yes

no

l = l + 1

n󳰀 = n󳰀 + 1

𝜉n󳰀 = xl

𝜉j,n󳰀 = cj,l , j =

l > n

1∼m

stop

Figure 3: Flow chart of vector transform when data missing occurs.

Then the pattern of the lost data can be supplement by the
following formula:

𝑥𝑙 ≅ 𝑐𝑃,𝑙, (12)

where subscript 𝑃 is pattern number and 𝑙 denotes the 𝑙th
component of 󳨀⇀𝑥 and ⃗𝑐𝑃. Note that this 󳨀⇀𝑥 is a new input
vector when the rainfall is applied.

Another typhoon event, Aere in 2004 with large missing
data in Sanxia, was chosen for demonstrating the perfor-
mance of incomplete input data.

3.4. Validation and Performance Measures. To evaluate the
model performance, two indices which are commonly used
are employed here.

Coefficient of correlation (CC) is as follows:

CC = ∑𝑁𝑖=1 (𝑝𝑖 − 𝑝) (𝑜𝑖 − 𝑜)
√∑𝑁𝑖=1 (𝑝𝑖 − 𝑝)2 × ∑𝑁𝑖=1 (𝑜𝑖 − 𝑜)2

. (13)

Coefficient of efficiency (CE) is as follows:

CE = 1 − ∑
𝑁
𝑖=1 (𝑝𝑖 − 𝑜𝑖)2
∑𝑁𝑖=1 (𝑜𝑖 − 𝑜)2

. (14)

In (13) and (14),𝑝 is the forecast value and 𝑜 is the observation
value. 𝑖 is the serial number of sample, and 𝑁 is the amount

of samples included in a certain event. The over bar indicates
the average quantities:

𝑜 = 1𝑁
𝑁

∑
𝑖=1

𝑜𝑖 (15a)

𝑝 = 1𝑁
𝑁

∑
𝑖=1

𝑝𝑖. (15b)

4. Result and Discussion

Table 3 illustrates the results of coefficient of correlation and
coefficient of efficiency in the dataset of calibration. It is
apparent from the information supplied that they showed the
consistency among the 13 rain gages. The correlation coeffi-
cient exceeds 0.66 (the lowest at Shimen), while the highest
is up to 0.84. The highest coefficient of efficiency is 0.65
(Fushan) and the average is 0.55.

Typhoon Soudelor was the most intense tropical cyclone
to develop in the Northern Hemisphere in 2015 (category 5
super typhoon scaled by SSHWS). When it passed through
Taiwan, torrential rains and destructive winds caused
widespread damage and disruptions, especially in north area.
According to Central Emergency Operation Center, at least
eight people were killed and four were missing in Taiwan, in
addition to 437 injured. Agricultural losses across the island
were estimated atNT$2.2 billion (US$66.7million) byAugust
11. A record-breaking 4.29 million households lost power on
the island. Figure 4 shows the observed hourly rainfall data
and the simulation results during Typhoon Soudelor (2015).
As we can see, the observed hourly rainfall data are up to
87mm in Zhuzihu rain gage. In addition, the model output
showed a good agreement between simulated and observed
data. The coefficient of correlation and efficiency values are
shown in Table 4. The coefficient of correlation exceeds 0.68
(the lowest at Shimen), while the highest is up to 0.89 (Zhuz-
ihu). The highest coefficient of efficiency is 0.74 (Shiding and
Ruifang) and the average is 0.62.

Typhoon Dujuan was the second most intense tropical
cyclone of the Northwest Pacific Ocean in 2015 (category 4
typhoon scaled by SSHWS). Three people were killed and
376 were injured in Taiwan. Figure 5 shows the observed
hourly rainfall data and the simulation results during Dujuan
Typhoon (2015). It also indicated that the observed data and
the simulated data were quite close.The coefficient of correla-
tion and efficiency values are shown in Table 5.The coefficient
of correlation exceeds 0.69 (the lowest at Shimen), while
the highest is up to 0.88 (Jhongjheng Bridge). The highest
coefficient of efficiency is 0.77 (Jhongjheng Bridge) and the
average is 0.65.
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Figure 4: Continued.
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Figure 4: Results of hourly rainfall forecast during Typhoon Soudelor (2015).

Table 4: Coefficients of correlation and efficiency during Typhoon Soudelor (2015).

Shimen Dabao Fushan Datongshan Pinglin Jhongjheng
Bridge Wudu Zhuzihu Bihu Shiding Sanxia Ruifang Huoshaoliao Average

CC 0.68 0.78 0.77 0.82 0.77 0.82 0.76 0.89 0.83 0.86 0.84 0.87 0.84 0.81
CE 0.44 0.53 0.54 0.62 0.55 0.67 0.56 0.69 0.68 0.74 0.64 0.74 0.65 0.62

Table 5: Coefficients of correlation and efficiency during Typhoon Dujuan (2015).

Shimen Dabao Fushan Datongshan Pinglin Jhongjheng
Bridge Wudu Zhuzihu Bihu Shiding Sanxia Ruifang Huoshaoliao Average

CC 0.69 0.82 0.77 0.85 0.84 0.88 0.83 0.86 0.79 0.81 0.84 0.86 0.85 0.82
CE 0.45 0.62 0.57 0.73 0.71 0.77 0.68 0.71 0.62 0.64 0.7 0.66 0.67 0.65
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Figure 5: Continued.
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Figure 5: Results of hourly rainfall forecast during Typhoon Dujuan (2015).

Figure 6 shows the observed data and results of simula-
tion during Typhoon Aere (2004). Because of missing data,
there is no observed rainfall data at Sanxia station during
Typhoon Aere. By the procedure of supplement, data of
remaining stations could still be simulated and compared to
the observed data.The coefficient of correlation and efficiency
values are shown in Table 6. The simulation of the coefficient
of correlation exceeds 0.61 (the lowest at Ruifang), while the
highest is up to 0.89 (Fushan). The highest coefficient of
efficiency is 0.76 (Fushan), while the average is 0.55.

Compared to previous studies, in Luk et al. [11], they
used BPNN and successfully built a model for forecasting the

rainfall pattern in the next coming 15 minutes. Normalized
mean squared error (NMSE) was chosen as the performance
indicator andwas about 0.63 to 0.65. In Luk et al. [12] they also
used the same concept to build another rainfall forecasting
model by applying other kinds of neural networks such
as multilayer feedforward neural network, partial recurrent
network, and time delayed neural network.Normalizedmean
squared error was about 0.63 to 0.67 forecasting the rainfall
pattern in the next coming 15 minutes. In Lin et al. [14],
they used SVM-based models with and without typhoon
characteristics to forecast the rainfall. The coefficients of effi-
ciency are 0.44 and 0.43, respectively. In this study the average
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Figure 6: Continued.
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Figure 6: Results of hourly rainfall forecast during Typhoon Aere (2004) (data at Sanxia gage was missing).

coefficient of efficiency is 0.64 and reasonably good results
have been observed. We thus think that the improvement is
effective.

Note that the dimensions consist of two factors: the
number of previous time steps and rain gages. They are also
related to cluster sizes while sizes and number of clusters
depend on how many samples we have. As we have limited
number of samples, the cluster sizes would be too small if
we use too many dimensions. That would cause inaccuracy
by overfitting. Because the rainfall forecasting model is
developed for the use of flood mitigation around the capital

city of Taiwan, we should use as many rain gages in the entire
watershed as possible. That is also the reason we need to
make the systemkeep onworking even if datamissing occurs.
When trying to develop a similar rainfall forecast system in
other area with a larger sample size, one could have more
options to test the effect of number of dimensions and cluster
size. In this paper rainfall records of last and present hour are
used as the input data to forecast gaged rainfall in the next
hour. Totally 13 rain gages in space were used since data in
remaining 3 rain gages are not enough. So we have totally 26
components in the input data.
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Table 6: Coefficients of correlation and efficiency during Typhoon Aere (2004) (data at Sanxia gage was missing).

Shimen Dabao Fushan Datongshan Pinglin Jhongjheng
Bridge Wudu Zhuzihu Bihu Shiding Sanxia Ruifang Huoshaoliao Average

CC 0.81 0.72 0.89 0.75 0.83 0.8 0.72 0.74 0.72 0.70 — 0.61 0.79 0.75
CE 0.61 0.52 0.76 0.56 0.68 0.63 0.39 0.54 0.53 0.41 — 0.39 0.61 0.55

5. Conclusions

By integrating technique of cluster analysis and pattern
recognition, an unsupervisedmethod is adopted in this paper
to provide reasonably accurate and effective typhoon hourly
rainfall forecast. Not only can the missing data be supplied
but also rainfall data of space and time in the previous time
steps are needed to forecast the hourly intensity of rainfall
for next time steps. Present proposed forecast model is tested
using historical rainfall data in Tamsui River Basin. Among
32 typhoon events from which complete rainfall records can
be obtained, 30 of them are used to calibrate. The data are
clustered into 22 patterns for the network construction. After
the framework is built, the rest two of the typhoon events,
Soudelor (2015) and Dujuan (2015), are used to validate the
model. Additionally, another typhoon event, Aere (2004),
during which the rainfall data was lost at one of the 13
gages, is used to illustrate how this model works when the
input of themodel is incomplete.The performance is testified
by coefficient of correlation and coefficient of efficiency.
Reasonably good results have been observed in these cases.
It shows that present proposed forecast model is well suited
for predicting the hourly rainfall during typhoon inNorthern
Taiwan.
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