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Conformal mapping is a useful technique for handling irregular geometries when applying the finite difference method to solve
partial differential equations. When the mapping is from a hyperrectangular region onto a rectangular region, a specific length-
to-width ratio of the rectangular region that fitted the Cauchy-Riemann equations must be satisfied. In this research, a numerical
integral method is proposed to find the specific length-to-width ratio. It is conventional to employ the boundary integral method
(BIEM) to perform the conformal mapping. However, due to the singularity produced by the BIEM in seeking the derivatives
on the boundaries, the transformation Jacobian determinants on the boundaries have to be evaluated at inner points instead of
directly on the boundaries. This approximation is a source of numerical error. In this study, the transformed rectangular property
and the Cauchy-Riemann equations are successfully applied to derive reduced formulations of the derivatives on the boundaries for
the BIEM. With these boundary derivative formulations, the Jacobian determinants can be evaluated directly on the boundaries.
Furthermore, the results obtained are more accurate than those of the earlier mapping method.

1. Introduction

The finite difference method (FDM) is a conventional
numerical method commonly used in computational sci-
ence because partial differential equations can be directly
discretized [1–3]. However, when the computational region
is irregular, boundary values must be evaluated through
interpolation, extrapolation, or both, which results in greater
computation costs and decreases accuracy [4, 5].

A common solution to circumvent this problem is to
transform the irregular region into a rectangular region
and solve partial differential equations on the rectangular
region [6–10]. According to a study by Thompson et al. [11],
a system of elliptic partial differential equations can guar-
antee a one-to-one transformation between the physical and
computational domains. When the transformation is con-
formal, the number of additional terms introduced by the
transformation of the governing equation is the minimum.
Thus, inaccuracy can be avoided.

By applying the conformal mapping method to build an
effective grid-generation system, Tsay et al. [12] employed

the boundary integral equation method (BIEM) (also called
the boundary element method, BEM) to solve the Laplace
equations. The BIEM is preferable to the Laplace-equation-
governed transformation process for a number of reasons:
(1) it is not necessary to discretize the entire domain; (2)
solutions can be evaluated exactly; (3) derivatives of variables
can be evaluated directly without difference schemes; and (4)
once the solutions at all the discretized boundary nodes are
obtained, at any given point in the domain the solution as
well as the partial derivatives can be easily found without
remeshing. When the conformal mapping is performed, the
governing equation of the physical domain will be trans-
formed into a formulation in terms of derivatives with respect
to the coordinates. Although the derivatives in the domain
can be directly evaluated by using the BIEM, it suffers from
the fact that the derivatives cannot be evaluated exactly on
the boundaries [13, 14]. This drawback makes one be only
able to evaluate the derivatives close to the boundaries as the
boundary derivatives.

A limitation of the Laplace-equation-governed transfor-
mation is that the region to be transformed should be a
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quadrilateral with right-angled corners, which is known as
a hyperrectangular region [12]. When a hyperrectangular
region is transformed into a rectangular region by using con-
formal mapping, the length-to-width ratio of the rectangular
region is a particular value [15]. To find this ratio, Seidl and
Klose [15] converted the Cauchy-Riemann equations into
a set of two Laplace equations and proposed an iterative
procedure with a finite difference solution. In this research,
an explicit integral method was proposed to find this ratio,
without the time consumption of solving a system of linear
equations.

Although the applicability of the conformal transforma-
tion used by Tsay et al. [12] to arbitrary irregular regions
could be extended by using a sequence of 𝑍

𝑛 transformations
[16], the applicability of the grid-generation system proposed
by Tsay et al. [12, 14, 16] is still limited due to the above-
mentioned problem of inaccurate boundary partial deriva-
tives.This problem not only precludes the derivatives and the
transformation Jacobian determinants from being evaluated
exactly on the boundaries, but also decreases the accuracy of
the finite difference computation after the transformation.

In this paper, by applying the rectangular properties of
the transformed region and the Cauchy-Riemann equations,
the derivatives and the Jacobian determinants of the transfor-
mation can be evaluated on the boundaries. This evaluation
significantly improves the transformation accuracy.

2. Mathematical Description of
the Coordinate Transformation

Based on the Cauchy-Riemann equations, the forward con-
formal transformation, from the physical domain (𝑥-𝑦 coor-
dinates) to the computational domain (𝜉-𝜂 coordinates), can
be reduced to a problem governed by two Laplace equations:

𝜕
2

𝜉

𝜕𝑥2
+

𝜕
2

𝜉

𝜕𝑦2
= 0, (1a)

𝜕
2

𝜂

𝜕𝑥2
+

𝜕
2

𝜂

𝜕𝑦2
= 0, (1b)

with the boundary conditions

n ⋅ ∇𝜂 = 0 on 𝜉 = 0, 𝜉 = 𝜉
0
, (2a)

n ⋅ ∇𝜉 = 0 on 𝜂 = 0, 𝜂 = 𝜂
0
, (2b)

where n is the outward normal vector of the boundaries
and ∇ is the gradient operator. Here, the range of either 𝜉

or 𝜂 can be chosen arbitrarily while the range of the other
coordinate is restricted by the satisfaction of the Cauchy-
Riemann equations:

𝜕𝜉

𝜕𝑥
=

𝜕𝜂

𝜕𝑦
, (3a)

𝜕𝜉

𝜕𝑦
= −

𝜕𝜂

𝜕𝑥
. (3b)

That is, when satisfying the Cauchy-Riemann equations,
there is always a specific value of 𝜂

0
that corresponds to a

given 𝜉
0
, and vice versa. To find this specific value, Seidl and

Klose [15] proposed an iterative scheme. Besides, Wu et al.
[17] showed that the transformation is not conformal but still
orthogonal if one simply chooses both values of 𝜉

0
and 𝜂

0

arbitrarily. In Section 4, we will propose a numerical integral
method to find the specific ratio of 𝜉

0
to 𝜂
0
which satisfies the

Cauchy-Riemann equations.
By applying the divergence theorem, (1a) and (1b) can be

represented as an integral equation [13]:

𝛼Φ (𝑃) = ∫
Γ

[Φ (𝑄)
𝜕𝑟

𝜕𝑛
− ln 𝑟

𝜕

𝜕𝑛
Φ (𝑄)] 𝑑𝜏, (4)

where Φ represents 𝜉 or 𝜂; Γ is the bounding contour of the
problem domain 𝐷; 𝑛 is the out-normal direction of Γ; 𝑃

represents a source point; 𝑄 represents a boundary point;
𝑟 is the distance from 𝑃 to 𝑄; 𝛼 = 2𝜋 when 𝑃 is located
inside the domain; and 𝛼 is 𝜋/2 or 𝜋 when 𝑃 is located
on the corners or the straight boundaries, respectively, as
shown in Figure 1. An elementwise local coordinate system
(𝑠-𝜆) is adopted to discretize the geometry as linear elements,
as shown in Figure 2, where the subscripts 𝑗 and 𝑗 + 1

represent the starting and ending nodes of an element and the
subscript 𝑖 represents the 𝑖th source point. After discretizing
the boundary and choosing the source points as the nodal
points of the elements, the unknown function values, Φ,
and their normal derivatives, 𝜕Φ/𝜕𝑛, can be formulated as
simultaneous equation system and then be solved [13, 16]. To
ease the explanation, the above solution for the unknowns of
boundary elements is named boundary-unknown solving step
in this paper.

The inverse conformal transformation is also governed by
Laplace equations, whose function values are 𝑥 and 𝑦 with
independent variables of 𝜉 and 𝜂:

𝜕
2

𝑥

𝜕𝜉2
+

𝜕
2

𝑥

𝜕𝜂2
= 0, (5a)

𝜕
2

𝑦

𝜕𝜉2
+

𝜕
2

𝑦

𝜕𝜂2
= 0, (5b)

and the following Cauchy-Riemann equations should be
satisfied:

𝜕𝑥

𝜕𝜂
= −

𝜕𝑦

𝜕𝜉
, (6a)

𝜕𝑦

𝜕𝜂
=

𝜕𝑥

𝜕𝜉
. (6b)

Since the values of 𝑥 and 𝑦 on the boundary are already
known, the boundary condition of the inverse transformation
is theDirichlet type.The formulation of integral equations for
(5a) and (5b) is the same as (4), but Φ represents 𝑥 or 𝑦. A
sketch of the transformation is illustrated in Figure 3.

After Φ and 𝜕Φ/𝜕𝑛 on the boundary are solved, Φ

inside the domain can be obtained by using (4) explicitly,
where 𝑃 is now located either inside the domain or on
the boundary. In this research, a hyperrectangular region is
transformed into a rectangular region. It is easy to generate
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Figure 1: Configuration for 𝑃, 𝑄, 𝑟, and 𝛼, associated with the problem domain 𝐷 with the bounding contour Γ. (a) 𝑃 is enclosed by Γ; (b) 𝑃

is located on Γ.
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Figure 2: Definition of the elementwise local coordinates: s-𝜆 coordinates. The 𝑥-𝑦 coordinates are global coordinates. The 𝑒th element
𝑠
𝑗

− 𝑠
𝑗+1

is a local element with outward normal vector n and an included angle 𝜓 with the global 𝑥-𝑦 coordinates. The local coordinate 𝜆 is
positive if 𝜆 and n are in the same direction. 𝑟

𝑖
is the distance from the 𝑖th source point 𝑃

𝑖
to a boundary point 𝑄(𝑠, 𝜆).
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Figure 3: A sketch of the orthogonal transformation from the physical domain (𝑥-𝑦 coordinates) to the computational domain (𝜉-𝜂
coordinates).
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Figure 4: An illustration for the solution of the partial derivatives on the boundaries. The values of 𝜕𝑥/𝜕𝜉 and 𝜕𝑦/𝜕𝜉 on the top and bottom
boundaries can be solved for directly using the BIEMwith the improved formulation, and then the values of 𝜕𝑥/𝜕𝜂 and 𝜕𝑦/𝜕𝜂 can be obtained
using theCauchy-Riemann equations. Similarly, the values of 𝜕𝑥/𝜕𝜂 and 𝜕𝑦/𝜕𝜂 on the right and left boundaries can be solved for directly using
the BIEM with the improved formulation, and then the values of 𝜕𝑥/𝜕𝜉 and 𝜕𝑦/𝜕𝜉 can be obtained using the Cauchy-Riemann equations.

an orthogonal grid in the rectangular region by using (4),
where Φ represents the coordinate of the rectangular region.
Then, each grid node is mapped onto the hyperrectangular
region, by using (4) again, where Φ represents the coordinate
of the hyperrectangular region now. The above evaluation
of grid nodes is named grid-generation step in this paper.
The regular orthogonal grid in the rectangular region is very
convenient for applying FDM. To perform FDM on the grid
in the rectangular region, the governing equation usually has
to transform into a formulation with Jacobian determinants
[18–20]. For example, the Biharmonic equation, ∇4𝜙

(𝑥,𝑦)
= 0,

has to transform into ∇
2

(𝐽
(𝑥,𝑦)

∇
2

𝜙
(𝜉,𝜂)

) = 0, where 𝑥 and 𝑦

are coordinates of the hyperrectangular region; 𝜉 and 𝜂 are
coordinates of the rectangular region; 𝐽

(𝑥,𝑦)
is the Jacobian

determinant for the forward transformation.
The Jacobian determinants for the forward transforma-

tion and inverse transformation are defined, respectively, as
below:

𝐽
(𝑥,𝑦)

=



𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜂

𝜕𝑦



=
𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑦
−

𝜕𝜉

𝜕𝑦

𝜕𝜂

𝜕𝑥
, (7a)

𝐽
(𝜉,𝜂)

=



𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂



=
𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜂
−

𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜉
. (7b)

With the help of Chain rule and these Jacobian determinants,
the relationships between the partial derivatives of 𝑥-𝑦 and
𝜉-𝜂 can be built as follows:

𝜕𝑥

𝜕𝜉
=

1

𝐽
(𝑥,𝑦)

𝜕𝜂

𝜕𝑦
, (8a)

𝜕𝑥

𝜕𝜂
= −

1

𝐽
(𝑥,𝑦)

𝜕𝜉

𝜕𝑦
, (8b)

𝜕𝑦

𝜕𝜉
= −

1

𝐽
(𝑥,𝑦)

𝜕𝜂

𝜕𝑥
, (8c)

𝜕𝑦

𝜕𝜂
=

1

𝐽
(𝑥,𝑦)

𝜕𝜉

𝜕𝑥
, (8d)

𝜕𝜉

𝜕𝑥
=

1

𝐽
(𝜉,𝜂)

𝜕𝑦

𝜕𝜂
, (8e)

𝜕𝜉

𝜕𝑦
= −

1

𝐽
(𝜉,𝜂)

𝜕𝑥

𝜕𝜂
, (8f)

𝜕𝜂

𝜕𝑥
= −

1

𝐽
(𝜉,𝜂)

𝜕𝑦

𝜕𝜉
, (8g)

𝜕𝜂

𝜕𝑦
=

1

𝐽
(𝜉,𝜂)

𝜕𝑥

𝜕𝜉
. (8h)

After substituting (8a)–(8d) into (7b) or substituting (8e)–
(8h) into (7a), the relation between 𝐽

(𝑥,𝑦)
and 𝐽

(𝜉,𝜂)
can be

derived as follows:

𝐽
(𝑥,𝑦)

𝐽
(𝜉,𝜂)

= 1. (9)

3. The Derivatives and Jacobian Determinants
on the Boundaries

The Jacobian determinant is a combination of partial deriva-
tives. Since these derivatives are evaluated by the BIEM,
singularities occur when the unknown derivatives are located
on the boundaries. A previous research has suggested that
these boundary derivatives can be approximated by evalu-
ating the inner points that are very close to the boundaries
[16]. In this study, the derivative formulations of the BIEM
are carefully investigated. By applying the Cauchy-Riemann
equations, a method of evaluating the boundary derivatives
is proposed. Unlike conventional methods that just calculate
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the derivative close to the boundary as succedaneums, this
method can produce accurate numerical results exactly on
the boundaries.

The partial derivatives of Φ can be found by differenti-
ating (4), and then the following formulations are obtained
[13]:

𝛼
𝜕

𝜕𝑥
1

Φ (𝑃) = ∫
Γ

[Φ (𝑄)
𝜕

𝜕𝑥
1

(
1

𝑟

𝜕𝑟

𝜕𝑛
)

−
𝜕

𝜕𝑥
1

(ln 𝑟)
𝜕

𝜕𝑛
Φ (𝑄)] 𝑑𝜏,

(10a)

𝛼
𝜕

𝜕𝑥
2

Φ (𝑃) = ∫
Γ

[Φ (𝑄)
𝜕

𝜕𝑥
2

(
1

𝑟

𝜕𝑟

𝜕𝑛
)

−
𝜕

𝜕𝑥
2

(ln 𝑟)
𝜕

𝜕𝑛
Φ (𝑄)] 𝑑𝜏.

(10b)

The function value and its normal derivative on the boundary,
Φ(𝑄) and (𝜕/𝜕𝑛)Φ(𝑄), are already known after the evaluation
of (4). 𝑥

1
and 𝑥

2
represent 𝑥 and 𝑦, respectively, when the

function value Φ is 𝜉 or 𝜂. Conversely, 𝑥
1
and 𝑥

2
represent 𝜉

and 𝜂, respectively, when the function value Φ is 𝑥 or 𝑦. After
the geometry discretization, the following derivative terms
can be represented with the local coordinate system (𝑠-𝜆):

𝜕𝑟

𝜕𝑛
=

𝜆

𝑟
, (11a)

𝜕𝜆

𝜕𝑥
1

= sin𝜓, (11b)

𝜕𝑟

𝜕𝑥
1

= −
𝑠 cos𝜓 − 𝜆 sin𝜓

𝑟
, (11c)

𝜕𝜆

𝜕𝑥
2

= − cos𝜓, (11d)

𝜕𝑟

𝜕𝑥
2

= −
𝜆 cos𝜓 + 𝑠 sin𝜓

𝑟
. (11e)

By applying (11a)–(11e), (10a) and (10b) can be represented
with the following formulations, respectively:

𝜕

𝜕𝑥
1

Φ (𝑃) =
1

𝛼
∫
Γ

[
Φ sin𝜓

𝑟2

+
2Φ𝜆 (𝑠 cos𝜓 − 𝜆 sin𝜓)

𝑟4

+
𝑠 cos𝜓 − 𝜆 sin𝜓

𝑟2

𝜕Φ

𝜕𝑛
] 𝑑𝜏,

(12a)

𝜕

𝜕𝑥
2

Φ (𝑃) =
1

𝛼
∫
Γ

[−
Φ cos𝜓

𝑟2

+
2Φ𝜆 (𝜆 cos𝜓 + 𝑠 sin𝜓)

𝑟4

+
𝜆 cos𝜓 + 𝑠 sin𝜓

𝑟2

𝜕Φ

𝜕𝑛
] 𝑑𝜏.

(12b)

Liggett and Liu [13] have indicated that these cannot be
evaluated on the boundaries because singularities will occur.
However, they are actually applicable on the boundaries
in the conformal mapping process, through the following
investigation.

The discretization of these boundary integral equations is
performed by linear approximations, and the potential and its
normal derivative are subsequently approximated by

Φ =

[(Φ
𝑗+1

− Φ
𝑗
) 𝑠 + (𝑠

𝑗+1
Φ
𝑗

− 𝑠
𝑗
Φ
𝑗+1

)]

(𝑠
𝑗+1

− 𝑠
𝑗
)

,

𝜕Φ

𝜕𝑛
=

{[(𝜕Φ/𝜕𝑛)
𝑗+1

− (𝜕Φ/𝜕𝑛)
𝑗
] 𝑠 + [𝑠

𝑗+1
(𝜕Φ/𝜕𝑛)

𝑗
− 𝑠
𝑗
(𝜕Φ/𝜕𝑛)

𝑗+1
]}

(𝑠
𝑗+1

− 𝑠
𝑗
)

(13)

for 𝑠
𝑗

≤ 𝑠 ≤ 𝑠
𝑗+1

, where the subscripts 𝑗 and 𝑗 + 1

represent the starting and ending nodes of an element. After
substituting (13) into (12a) and integrating each term in the
local coordinate system (𝑠-𝜆), the discretized formulation
of the integral equation for the derivative in the horizontal
direction can then be represented as

𝜕

𝜕𝑥
1

Φ (𝑃)

=
1

𝛼

𝑛

∑

𝑒=1

{{{

{{{

{

[𝐴 𝐵] [

Φ
𝑗

Φ
𝑗+1

] + [𝐶 𝐷]
[
[
[

[

(
𝜕Φ

𝜕𝑛
)

𝑗

(
𝜕Φ

𝜕𝑛
)

𝑗+1

]
]
]

]

}}}

}}}

}

,

(14)

where 𝑒 represents the 𝑒th discretized element on the bound-
ary, 𝑛 is the number of the elements, and

𝐴 = −𝐼
𝑥
1

11
− 𝐽
𝑥
1

11
+ 𝐾
𝑥
1

11
+ 𝑠
𝑗+1

(𝐼
𝑥
1

12
+ 𝐽
𝑥
1

12
− 𝐾
𝑥
1

12
) , (15a)

𝐵 = 𝐼
𝑥
1

11
+ 𝐽
𝑥
1

11
− 𝐾
𝑥
1

11
− 𝑠
𝑗
(𝐼
𝑥
1

12
+ 𝐽
𝑥
1

12
− 𝐾
𝑥
1

12
) , (15b)

𝐶 = −𝐼
𝑥
1

21
+ 𝐽
𝑥
1

21
+ 𝑠
𝑗+1

(𝐼
𝑥
1

22
− 𝐽
𝑥
1

22
) , (15c)

𝐷 = 𝐼
𝑥
1

21
− 𝐽
𝑥
1

21
− 𝑠
𝑗
(𝐼
𝑥
1

22
− 𝐽
𝑥
1

22
) , (15d)

in which

𝐼
𝑥
1

11
=

sin𝜓

𝑠
𝑗+1

− 𝑠
𝑗

×
1

2
ln

𝑠
𝑗+1

2

+ 𝜆
𝑖

2

𝑠
𝑗

2 + 𝜆
𝑖

2
, (16a)
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𝐼
𝑥
1

12
=

sin𝜓

𝑠
𝑗+1

− 𝑠
𝑗

×
1

𝜆
𝑖

(tan−1
𝑠
𝑗+1

𝜆
𝑖

− tan−1
𝑠
𝑗

𝜆
𝑖

) , (16b)

𝐽
𝑥
1

11
=

cos𝜓

𝑠
𝑗+1

+ 𝑠
𝑗

[

𝜆
𝑖
𝑠
𝑗

𝑠
𝑗

2 + 𝜆
𝑖

2
−

𝜆
𝑖
𝑠
𝑗+1

𝑠
𝑗+1

2 + 𝜆
𝑖

2

+ (tan−1
𝑠
𝑗+1

𝜆
𝑖

− tan−1
𝑠
𝑗

𝜆
𝑖

)] ,

(16c)

𝐽
𝑥
1

12
=

𝜆
𝑖
cos𝜓

𝑠
𝑗+1

− 𝑠
𝑗

[
1

𝑠
𝑗

2 + 𝜆
𝑖

2
−

1

𝑠
𝑗+1

2 + 𝜆
𝑖

2
] , (16d)

𝐾
𝑥
1

11
=

𝜆
𝑖

2 sin𝜓

𝑠
𝑗+1

− 𝑠
𝑗

[
1

𝑠
𝑗

2 + 𝜆
𝑖

2
−

1

𝑠
𝑗+1

2 + 𝜆
𝑖

2
] , (16e)

𝐾
𝑥
1

12
=

sin𝜓

𝑠
𝑗+1

− 𝑠
𝑗

[−

𝑠
𝑗

𝑠
𝑗

2 + 𝜆
𝑖

2
+

𝑠
𝑗+1

𝑠
𝑗+1

2 + 𝜆
𝑖

2

+
1

𝜆
𝑖

(tan−1
𝑠
𝑗+1

𝜆
𝑖

− tan−1
𝑠
𝑗

𝜆
𝑖

)] ,

(16f)

𝐼
𝑥
1

21
=

cos𝜓

𝑠
𝑗+1

− 𝑠
𝑗

[𝑠
𝑗+1

− 𝑠
𝑗

− 𝜆
𝑖
(tan−1

𝑠
𝑗+1

𝜆
𝑖

− tan−1
𝑠
𝑗

𝜆
𝑖

)] ,

(16g)

𝐼
𝑥
1

22
=

cos𝜓

2 (𝑠
𝑗+1

− 𝑠
𝑗
)

ln
𝑠
𝑗+1

2

+ 𝜆
𝑖

2

𝑠
𝑗

2 + 𝜆
𝑖

2
, (16h)

𝐽
𝑥
1

21
=

𝜆
𝑖
sin𝜓

2 (𝑠
𝑗+1

− 𝑠
𝑗
)

ln
𝑠
𝑗+1

2

+ 𝜆
𝑖

2

𝑠
𝑗

2 + 𝜆
𝑖

2
, (16i)

𝐽
𝑥
1

22
=

sin𝜓

(𝑠
𝑗+1

− 𝑠
𝑗
)

(tan−1
𝑠
𝑗+1

𝜆
𝑖

− tan−1
𝑠
𝑗

𝜆
𝑖

) . (16j)

During the grid-generation step, when 𝑃 is located on
the top or bottom boundary of the transformed rectangular
region, where 𝜆

𝑖
= 0, singularity will occur in (16b) and

(16f). However, at the same time, the value of 𝜓 is either 0
or 𝜋 which makes sin𝜓 = 0. This zero value of sin𝜓 makes
the singularities of (16b) and (16f) vanish. Besides, it should
be emphasized that the value of the term (tan−1(𝑠

𝑗+1
/𝜆
𝑖
) −

tan−1(𝑠
𝑗
/𝜆
𝑖
)) is also zero when 𝜆

𝑖
= 0 [14]. After substituting

𝜆
𝑖
= 0, sin𝜓 = 0, and (tan−1(𝑠

𝑗+1
/𝜆
𝑖
) − tan−1(𝑠

𝑗
/𝜆
𝑖
)) = 0 into

(16a)–(16j), the original discretized equations are reduced to
the following formulations:

𝐼
𝑥
1

11
= 𝐼
𝑥
1

12
= 𝐽
𝑥
1

11
= 𝐽
𝑥
1

12
= 𝐾
𝑥
1

11
= 𝐾
𝑥
1

12
= 𝐽
𝑥
1

21
= 𝐽
𝑥
1

22
= 0, (17a)

𝐼
𝑥
1

21
=

{

{

{

1; 𝜓 = 0

−1; 𝜓 = 𝜋,

(17b)

𝐼
𝑥
1

22
=

{{{{{

{{{{{

{

1

2 (𝑠
𝑗+1

− 𝑠
𝑗
)

ln
𝑠
𝑗+1

2

𝑠
𝑗

2
; 𝜓 = 0

−1

2 (𝑠
𝑗+1

− 𝑠
𝑗
)

ln
𝑠
𝑗+1

2

𝑠
𝑗

2
; 𝜓 = 𝜋.

(17c)

This result not only is relatively simple, but can also be
determined, except at the source point (𝑠

𝑗
= 0 or 𝑠

𝑗+1
=

0). Similarly, (12b), the derivative formulation in the vertical
direction, can be discretized to the following equation:

𝜕

𝜕𝑥
2

Φ (𝑃)

=
1

𝛼

𝑛

∑

𝑒

{{{

{{{

{

[𝐸 𝐹] [

Φ
𝑗

Φ
𝑗+1

] + [𝐺 𝐻]
[
[
[

[

(
𝜕Φ

𝜕𝑛
)

𝑗

(
𝜕Φ

𝜕𝑛
)

𝑗+1

]
]
]

]

}}}

}}}

}

,

(18)

where

𝐸 = 𝐼
𝑥
2

11
− 𝐽
𝑥
2

11
− 𝐾
𝑥
2

11
+ 𝑠
𝑗+1

(−𝐼
𝑥
2

12
+ 𝐽
𝑥
2

12
+ 𝐾
𝑥
2

12
) , (19a)

𝐹 = −𝐼
𝑥
2

11
+ 𝐽
𝑥
2

11
+ 𝐾
𝑥
2

11
− 𝑠
𝑗
(−𝐼
𝑥
2

12
+ 𝐽
𝑥
2

12
+ 𝐾
𝑥
2

12
) , (19b)

𝐺 = −𝐼
𝑥
2

21
− 𝐽
𝑥
2

21
+ 𝑠
𝑗+1

(𝐼
𝑥
2

22
+ 𝐽
𝑥
2

22
) , (19c)

𝐻 = 𝐼
𝑥
2

21
+ 𝐽
𝑥
2

21
− 𝑠
𝑗
(𝐽
𝑥
2

22
+ 𝐼
𝑥
2

22
) . (19d)

Notice that the formulation of 𝐼
𝑥
2

11
, 𝐼
𝑥
2

12
, 𝐽
𝑥
2

11
, 𝐽
𝑥
2

12
, 𝐾
𝑥
2

11
, 𝐾
𝑥
2

12
,

𝐼
𝑥
2

21
, 𝐼
𝑥
2

22
, 𝐽
𝑥
2

21
, and 𝐽

𝑥
2

22
can be obtained by changing sin𝜓 to

cos𝜓 and cos𝜓 to sin𝜓 in (16a)–(16j), and similar reduced
formulations can be derived when 𝑃 is located on the left or
right boundary of the transformed rectangular region:

𝐼
𝑥
2

11
= 𝐼
𝑥
2

12
= 𝐽
𝑥
2

11
= 𝐽
𝑥
2

12
= 𝐾
𝑥
2

11
= 𝐾
𝑥
2

12
= 𝐽
𝑥
2

21
= 𝐽
𝑥
2

22
= 0, (20a)

𝐼
𝑥
2

21
=

{{

{{

{

1; 𝜓 =
1

2
𝜋

−1; 𝜓 =
3

2
𝜋,

(20b)

𝐼
𝑥
2

22
=

{{{{{

{{{{{

{

1

2 (𝑠
𝑗+1

− 𝑠
𝑗
)

ln
𝑠
𝑗+1

2

𝑠
𝑗

2
; 𝜓 =

1

2
𝜋

−1

2 (𝑠
𝑗+1

− 𝑠
𝑗
)

ln
𝑠
𝑗+1

2

𝑠
𝑗

2
; 𝜓 =

3

2
𝜋.

(20c)

The Jacobian determinant of the inverse transformation,
from the rectangular region to the irregular region, defined as
(7b), is a combination of partial derivatives in the rectangular
region. On the top and bottom boundaries of the rectangular
region, the horizontal partial derivatives 𝜕𝑥/𝜕𝜉 and 𝜕𝑦/𝜕𝜉

can be evaluated using (14)–(17c). Instead of using the BIEM
directly, high-accuracy vertical derivatives 𝜕𝑥/𝜕𝜂 and 𝜕𝑦/𝜕𝜂

can be evaluated by applying the Cauchy-Riemann equations
for inverse transformation, (6a) and (6b). Similarly, on the
right and left boundaries, the vertical derivatives 𝜕𝑥/𝜕𝜂 and
𝜕𝑦/𝜕𝜂 can be derived using (18)–(20c), and the horizontal
partial derivatives 𝜕𝑥/𝜕𝜉 and 𝜕𝑦/𝜕𝜉 can be subsequently
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Figure 5: The integral paths of the numerical integral method for finding the length-to-width ratio to apply conformal mapping from a
hyperrectangular region onto a rectangular region.

Present approach path
Approach path by Tsay and Hsu [16]

= sin(−0.5)cosh(y) − cos(−0.5)sinh(y)

𝜙(x, 0.5) = cosh(0.5)cos(x) + sinh(0.5)sin(x)

= −sin(0.5)cosh(y) + cos(0.5)sinh(y)

𝜙(x, −0.5) = cosh(−0.5)cos(x) + sinh(−0.5)sin(x)

(0.0, 0.5)

x

y

𝜕𝜙

𝜕n (0.5,y)
=

𝜕𝜙

𝜕x (0.5,y)
||

𝜕𝜙

𝜕n (−0.5,y)
= −

𝜕𝜙

𝜕x (−0.5,y)
||

Figure 6: The unit square with complicated boundary conditions. In order to evaluate the derivative on a source point, this research
approached the point along the boundary, while Tsay and Hsu [16] approached the point from inside the boundary.

evaluated by applying the Cauchy-Riemann equations. An
illustration of this solution is provided in Figure 4.Once these
partial derivatives on the boundaries are evaluated using the
reduced formulations, high-accuracy Jacobian determinants
of the inverse transformation, 𝐽

(𝜉,𝜂)
, can be constructed

directly on the boundaries using (7b). After constructing
𝐽
(𝜉,𝜂)

, the derivatives of the forward transformation, 𝜕𝜉/𝜕𝑥,
𝜕𝜉/𝜕𝑦, 𝜕𝜂/𝜕𝑥, and 𝜕𝜂/𝜕𝑦, can be obtained using (8e)–(8h).
Finally, the Jacobian determinant of the forward transforma-
tion, 𝐽

(𝑥,𝑦)
, can be constructed by using (7a).

Taking advantage of the transformed rectangular geome-
try,most singular terms in the conventional derivative formu-
lations vanish, and the derivatives can then be evaluated on
the boundaries. Furthermore, most terms in the reduced for-
mulations are equal to zero, which implies far fewer computa-
tional errors than using conventional formulations. Although

the present reduced formulations still cannot evaluate the
derivatives at the source points, adopting approximations
with the present formulations can yield accurate results. An
illustrated example is provided in Section 5.

4. Length-to-Width Ratio of
Conformal Modulus

To perform conformal mapping from a hyperrectangular
region (𝑥-𝑦) to a rectangular region (𝜉-𝜂), a specific ratio of
length to width have to be fit on the rectangular region. An
iterative method has been presented by Seidl and Klose [15].
In this section, we propose a numerical integral method to
find this ratio as follows.

Let the width of the rectangular region (𝜂
0
) be equal to a

suitable value. Then 𝜕𝜂/𝜕𝑥, 𝜕𝜂/𝜕𝑦, and 𝐽
(𝑥,𝑦)

can be obtained
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Boundary derivative approximation of a source point
Tsay and Hsu [16]
Present
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Figure 7: The percentage errors of the boundary derivatives near the source point (0.0, 0.5). The errors were significantly reduced by using
the present scheme.

𝜆 of Ej

Ei

C

Ej

C

Figure 8: An illustration of the corner singularity. While evaluating the derivative of C, the small distance 𝜆 to 𝐸
𝑗
will become a singularity

source.

by solving ∇
2

𝜂 = 0 and (10a) and (10b). The corresponding
length (𝜉

0
) satisfying the Cauchy-Riemann equations can be

evaluated by the following integral equation:

𝜉
0

= ∫ 𝑑𝜉 = ∫
𝜕𝜉

𝜕𝑥
𝑑𝑥 + ∫

𝜕𝜉

𝜕𝑦
𝑑𝑦, (21)

where 𝜕𝜉/𝜕𝑥 = 𝜕𝜂/𝜕𝑦 and 𝜕𝜉/𝜕𝑦 = −𝜕𝜂/𝜕𝑥. By using
differencemethod, (21) was discretized to the following equa-
tion:

𝜉
0

=

𝑁

∑

𝑘=1

(𝜉
𝑘+1 − 𝜉

𝑘)

=

𝑁

∑

𝑘=1

[
𝜕𝜂

𝜕𝑦

𝑘∗
(𝑥|
𝑘+1

− 𝑥|
𝑘
)]

+

𝑁

∑

𝑘=1

[−
𝜕𝜂

𝜕𝑥

𝑘∗
(𝑦

𝑘+1 − 𝑦
𝑘)] ,

(22)

where the subscript 𝑘 represents the 𝑘th node on the integral
path; the subscript 𝑘

∗ means a middle location between 𝑘

and 𝑘 + 1; 𝑁 is the number of the nodes. The numerical

integration is performed from the side mapped onto 𝜉 =

0 to the other side mapped onto 𝜉 = 𝜉
0
. Theoretically,

the integration is independent of integral path. Since the
numerical error is unavoidable, several integral paths are
chosen in the hyperrectangular region (𝑥-𝑦) to reduce the
numerical error, for example, ⇀O

1
A
1
, ⇀O
2
A
2
, and ⇀O

3
A
3
, in

Figure 5. Then, perform integration using (22), respectively.
After the integrations are completed, the average of 𝜉

0
s from

these integral paths, 𝜉
0
, is used as the length of the rectangular

region that fitted Cauchy-Riemann equations.

5. Results and Discussion

This research proposes a numerical integral method to
calculate the length-to-with ratio of a rectangular region
when a conformalmapping is performed from a hyperrectan-
gular region to the rectangular region. Besides, an improved
scheme to directly solve for the partial derivatives on the
boundaries when conformal mapping is performed using
the BIEM is also proposed in this research. By applying the
properties of rectangular geometry, the reduced formulations
of BIEM discretization, (17a)–(17c) and (20a)–(20c), signifi-
cantly improved the accuracy of the calculation results.
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Figure 9: Conformal mapping from (a) an arc region to (b) a rectangular region, where 𝜃 is from 𝜋/4 to 3𝜋/4; 𝑅out = 2; 𝑅in = 1; 𝜂
0

= 1; and
𝜉
0

= 2.26618. 𝑅path is the integral path, equal to 1.3, 1.4, 1.5, 1.6, and 1.7, in this case.
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Figure 10: (a) The average length of rectangular region, 𝜉
0
, obtained by using the numerical integral method proposed in this research. (b)

The standard deviation of 𝜉
0
s from different integral paths.

In order to validate the improved boundary-derivative-
solving scheme, three examples are provided in this section:
the first is a transformation from a unit-square region into
another unit-square region; the second is a transformation
from an arc region into a rectangular region; the third is a
transformation from a wave-block region (one side is a wave
curve and other sides are straight lines) into a rectangular
region.

5.1. Unit-Square Transformation. The case of unit-square
transformation and the error estimates at a source point
are introduced first. When the calculation point is located
at a source point, neither the conventional nor the present

numerical scheme can provide the derivative. However, since
the governing equation is the Laplace equation, the analytical
solution should be continuous and smooth. These properties
make it reasonable to approach the derivative at the source
point using a numerical result from a nearby point. Tsay and
Hsu [16] suggested that an approach distance of 10−6 from the
inner domain be used to perform the derivative calculation,
while in this research the approximation approach along the
boundaries is used. To assess which approach can provide
results that are more accurate, a unit-square region with
two complicated Dirichlet and two Neumann boundary
conditions is considered. The Dirichlet boundaries were set
on the top and bottom and the Neumann boundaries were
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Figure 11:The percentage errors of the average length of rectangular
region, 𝜉

0
. As the discretized elements of the integral path are equal

to 500, the numerical error is negligible.

set on the right and left, as shown in Figure 6. The analytical
solution of the potential value and its partial derivative in the
𝑥-direction are

𝜙 = cos (𝑥) cosh (𝑦) + sin (𝑥) sinh (𝑦) ,

𝜕𝜙

𝜕𝑥
= − sin (𝑥) cosh (𝑦) + cos (𝑥) sinh (𝑦) .

(23)

In order to capture the complicated analytical solution,
100 elements were applied on each side of the computational
region, and then a series of computations in the derivative
with respect to 𝑥 near the source point (0.0, 0.5) were
performed. Figure 7 provides the percentage errors between
the analytical solutions at the source point (0.0, 0.5) and
the numerical results near the source point. Figure 7 shows
that the percentage errors from the approximations made by
Tsay and Hsu and in the present study both decrease as the
calculation point approaches the source point. However, the
present study generates significantly fewer errors. In addition,
when the approach distance is shorter than 10−12, Tsay and
Hsu’s numerical result becomes singular, whereas the present
scheme still provides an accurate result.

Unfortunately, a numerical result cannot be achieved at
the corners using this boundary approach. The reason for
this is as follows. Either (17a)–(17c) or (20a)–(20c) can be
applied to overcome the singularity that occurswhen the local
coordinate 𝜆 is equal to 0 for an element on one side close to a
corner. However, the local coordinate 𝜆 of the element on the
adjacent side is very small, while the original formulations in
(16a)–(16j) are applied. This substitution of a small 𝜆 in the
original formulations results in a singularity.

For example, in order to calculate the derivative value on
corner C in Figure 8, the calculation should be performed a
small distance away, along the boundary, at C because the
corner is a source point. When the derivative calculation is

performed using (18) and (19a)–(19d), the reduced formu-
lations in (20a)–(20c) are applied to solve the 𝜆 singularity
on the boundary elements on the left-hand side, 𝐸

𝑖
. Original

formulations in (16a)–(16j) are applied on the boundary
elements at the bottom, 𝐸

𝑗
. The small distance, 𝜆 of 𝐸

𝑗
,

results in another numerical singularity. To overcome this
problem, the conventional forward and backward difference
schemes are suggested, although they cannot provide the
same accuracy as the present scheme does at other points.

5.2. Arc-Region Transformation. The second example is a
transformation from an arc region into a rectangular region,
as shown in Figures 9(a) and 9(b), where 𝜃 is from 𝜋/4 to
3𝜋/4; 𝑅out = 2; 𝑅in = 1; and 𝜂

0
= 1. The remaining

unknown 𝜉
0
can be determined by the numerical integral

method proposed in this research, using 5 integral paths with
𝑅path = 1.3, 1.4, 1.5, 1.6, and 1.7, respectively, as the dash lines
shown in Figure 9(a).The development of 𝜉

0
with the number

of discretized elements of the integral path, 𝑁, is shown in
Figure 10(a). As 𝑁 is increasing, 𝜉

0
approaches the analytical

solution in (24a)–(24h). The standard deviation of these 𝜉
0
s

from different integral paths is observed to be independent
of 𝑁, when 𝑁 is greater than 200, as shown in Figure 10(b).
The error evaluations shown in Figure 11 illustrate that the
percentage errors decrease with 𝑁. When 𝑁 is equal to
500, the percentage error is only 1.55 × 10

−5(%). Since
the analytical solution is available in this case, conformal
mapping was performed using the analytical 𝜉

0
= 𝜋/ ln 4 =

2.26618, which derived from (24g). To perform the conformal
mapping with BIEM, either inner or outer curve boundary
of the arc region is discretized into 200 elements, and each
straight boundary is discretized into 100 elements. By using
the governing equations and boundary conditions for the
forward transformations shown in Figures 12(a) and 12(b),
AB, BC, CD, and DA sections in the arc region are mapped
onto AB, BC, CD, and DA sections in the rectangular
region, respectively. Then, the inverse transformation is
performed with the governing equations, ∇2𝑥 = 0 and ∇

2

𝑦 =

0, and all the Dirichlet type boundary conditions. After the
conformal mapping is completed, a 13 × 5 regular grid is
built in the rectangular region and then mapped onto the arc
region, as shown in Figures 13(a) and 13(b).

The numerical boundary derivatives and Jacobian deter-
minants were examined with their analytical values. The
analytical solutions of the forward transformation and the
related derivatives are listed below:

𝜉 = −𝑈 (tan−1
𝑦

𝑥
−

3

4
𝜋) , (24a)

𝜂 = 𝑈 ln√𝑥2 + 𝑦2 + 𝑉, (24b)

𝜕𝜉

𝜕𝑥
= 𝑈

𝑦

𝑥2 + 𝑦2
, (24c)

𝜕𝜉

𝜕𝑦
= −𝑈

𝑥

𝑥2 + 𝑦2
, (24d)
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Figure 12: The governing equations and boundary conditions of (a) 𝜉 transformation and (b) 𝜂 transformation.
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Figure 13: Orthogonal 13 × 5 grids generated by using BIEM: (a) arc region; (b) rectangular region.

𝜕𝜂

𝜕𝑥
= 𝑈

𝑥

𝑥2 + 𝑦2
, (24e)

𝜕𝜂

𝜕𝑦
= 𝑈

𝑦

𝑥2 + 𝑦2
, (24f)

where

𝑈 =
2

𝜋
𝜉
0

=
𝜂
0

ln (𝑅out/𝑅in)
, (24g)

𝑉 = −
𝜂
0

ln (𝑅out/𝑅in)
ln𝑅in. (24h)

Then, the analytical solutions of the inverse transformation
and related derivatives are as follows:

𝑥 = 𝑒
(𝜂−𝑉)/𝑈 cos(−

𝜉

𝑈
+

3

4
𝜋) , (25a)

𝑦 = 𝑒
(𝜂−𝑉)/𝑈 sin(−

𝜉

𝑈
+

3

4
𝜋) , (25b)

𝜕𝑥

𝜕𝜉
=

1

𝑈
𝑒
(𝜂−𝑉)/𝑈 sin(−

𝜉

𝑈
+

3

4
𝜋) , (25c)

𝜕𝑥

𝜕𝜂
=

1

𝑈
𝑒
(𝜂−𝑉)/𝑈 cos(−

𝜉

𝑈
+

3

4
𝜋) , (25d)

𝜕𝑦

𝜕𝜉
= −

1

𝑈
𝑒
(𝜂−𝑉)/𝑈 cos(−

𝜉

𝑈
+

3

4
𝜋) , (25e)

𝜕𝑦

𝜕𝜂
=

1

𝑈
𝑒
(𝜂−𝑉)/𝑈 sin(−

𝜉

𝑈
+

3

4
𝜋) . (25f)

Finally, the analytical Jacobian determinants can be derived
using above equations and shown as below:

𝐽
(𝜉,𝜂)

=
1

𝑈2
𝑒
2((𝜂−𝑉)/𝑈)

=
𝑥
2

+ 𝑦
2

𝑈2
=

1

𝐽
(𝑥,𝑦)

, (26)

which agrees with (9). Figures 14(a)–14(d), respectively,
compare the errors of 𝜕𝑥/𝜕𝜉, 𝜕𝑥/𝜕𝜂, 𝜕𝑦/𝜕𝜉, and 𝜕𝑦/𝜕𝜂, on the
boundaries evaluated using the scheme suggested byTsay and
Hsu [16] and the scheme provided in the present research.
The horizontal axis represents the node indices clockwise
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Figure 14: Comparison of the percentage errors of (a) 𝜕𝑥/𝜕𝜉, (b) 𝜕𝑥/𝜕𝜂, (c) 𝜕𝑦/𝜕𝜉, and (d) 𝜕𝑦/𝜕𝜂 between the present results and those from
Tsay and Hsu [16]. After adopting the present numerical scheme, the derivatives on the boundary are much more accurate.

along the boundary, excluding the corners. The vertical axis
represents the relative errors, 𝜀, defined as

𝜀 (%) =

𝜒 − 𝛾


𝛾
× 100, (27)

where 𝛾 represents analytical solutions and 𝜒 represents
numerical solutions. Although 𝜀 from Tsay and Hsu’s scheme
is small, it is observed to be further smaller than in the present
scheme. The errors of 𝐽

(𝜉,𝜂)
and 𝐽
(𝑥,𝑦)

on the boundaries by

using the two methods are compared in Figures 15(a) and
15(b). Since 𝐽

(𝑥,𝑦)
has a direct relation with 𝐽

(𝜉,𝜂)
, as shown in

(9) and (26), the trends of error distribution of 𝐽
(𝜉,𝜂)

and 𝐽
(𝑥,𝑦)

are similar. As can be seen, the present numerical scheme
provides more accurate results. To quantify the improved
accuracy, an average error was defined as 𝜀 = ∑

𝑁

𝑖
𝜀
𝑖
/𝑁, where

𝜀
𝑖
is the percentage error (%) at each boundary node and 𝑁

is the number of the boundary nodes excluding the corners.
Although the scheme of Tsay and Hsu [16] provides accurate
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Figure 15: Comparison of the percentage errors of (a) 𝐽
(𝜉,𝜂)

and (b) 𝐽
(𝑥,𝑦)

between the present results and those from Tsay and Hsu [16]. After
adopting the present numerical scheme, the transformed Jacobian determinants on the boundary are much more accurate.
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Figure 16: Conformal mapping from (a) a wave-block region to (b) a rectangular region, where 𝑅 = 1; 𝜂
0

= 3; 𝜉
0

= 4.966196. The dash line
in (a) is the numerical integral path for evaluating 𝜉

0
.

results with 𝜀 = 0.074% in both 𝐽
(𝜉,𝜂)

and 𝐽
(𝑥,𝑦)

, the average
error farther sharply decreases to 𝜀 = 0.00068%, after using
the present scheme.

5.3.Wave-Block Region Transformation. The third example is
a transformation from a wave-block region into a rectangular
region, as shown in Figures 16(a) and 16(b), where 𝑅 = 1 and
𝜂
0

= 3. 𝜉
0
was obtained by the numerical integral method,

since the analytical 𝜉
0
does not exist. To perform the numer-

ical integral method, 6 straight lines are chosen as integral
paths, as the dash lines in Figure 16(a). Figures 17(a) and
17(b), respectively, show the convergence of 𝜉

0
and its stand-

ard deviation 𝜎 with the discrete elements, using the numer-
ical integral method. As the number of the discretized

elements is equal to 25600, 𝜉
0
was convergent to 4.966196,

used in the conformal mapping process. 𝜎 was observed to
decrease with the number of the discretized elements. Ortho-
gonality of the grid is a criterion to examine whether 𝜉

0

approached the analytical 𝜉
0
. The following relative errors

quantify the grid orthogonality [17]:

AREo = √
∑
𝑚

𝑖=1
(∇𝜉 ⋅ ∇𝜂)

2

𝑖

∑
𝑚

𝑖=1
(
∇𝜉



2 ∇𝜂


2

)
𝑖

,

MREo = √
max {(∇𝜉 ⋅ ∇𝜂)

2

𝑖
, 𝑖 = 1 ∼ 𝑚}

((1/𝑚) ∑
𝑚

𝑖=1
(
∇𝜉



2 ∇𝜂


2

)
𝑖

)

.

(28)
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Figure 17: (a) The average length of the rectangular region transformed from the wave-block region. (b) The standard deviation of 𝜉
0
s from

different integral paths.
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Figure 18: The relative errors of orthogonality: (a) AREo and (b) MREo. The two errors are observed to linearly decrease with 𝜉
0
.

The smaller the values of AREo andMREo are, the higher the
orthogonality of the grid will be. A linear relation is observed
between not only AREo and 𝜉

0
, but also MREo and 𝜉

0
, as

shown in Figure 18. When 𝜉
0
is equal to 4.966196, AREo and

MREo are equal to 8.14 × 10−6 and 3.23 × 10−4, respectively.
The small values of AREo and MREo indicate that 𝜉

0
is very

close to the analytical value.
To perform the conformal mapping with BIEM, the

boundary is discretized into 1400 elements, where AB and
CD sections are discretized into 300 elements and AD and
BC sections are discretized into 400 elements. AB, BC, CD,
and DA sections of the wave-block region are mapped onto

AB, BC, CD, andDA sections of the rectangular region,
respectively. In the forward transformation, the governing
equations and boundary conditions are set as in Figure 19.
In the backward transformation, the governing equations are
∇
2

𝑥 = 0 and ∇
2

𝑦 = 0 with all the Dirichlet type boundary
conditions. After the conformal mapping was completed, a
50 × 30 regular grid is built in the rectangular region and
thenmapped onto thewave-block region, as shown in Figures
20(a) and 20(b).

The boundary derivatives of the conformal mapping
are evaluated using the improved scheme proposed in this
research. Since there is no analytical solution in this case, a
conventional numerical method, FDM, is used to examine
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Figure 19: The governing equations and boundary conditions of (a) 𝜉 transformation and (b) 𝜂 transformation.
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Figure 20: Orthogonal 50 × 30 grids generated by using BIEM: (a) wave-block region; (b) rectangular region.

the correctness of the proposed scheme. It is applied in the
rectangular region (𝜉-𝜂 coordinates) to obtain the boundary
derivatives 𝜕𝑥/𝜕𝜉, 𝜕𝑥/𝜕𝜂, 𝜕𝑦/𝜕𝜉, and 𝜕𝑦/𝜕𝜂. Then, (8e)–(8h)
are used to obtain the boundary derivatives 𝜕𝜉/𝜕𝑥, 𝜕𝜉/𝜕𝑦,
𝜕𝜂/𝜕𝑥, and 𝜕𝜂/𝜕𝑦. To increase the accuracy, the second-order
formulations of FDM are used, as shown in the following:

Φ


𝑖
=

−3Φ
0

𝑎
+ 4Φ
+Δ

𝑎
− Φ
+2Δ

𝑎

2Δ
+ 𝑂
2

(forward difference formulation) ,

Φ


𝑖
=

3Φ
0

𝑎
− 4Φ
−Δ

𝑎
+ Φ
−2Δ

𝑎

2Δ
+ 𝑂
2

(backward difference formulation) ,

Φ


𝑖
=

Φ
+0.5Δ

𝑎
− Φ
−0.5Δ

𝑎

Δ
+ 𝑂
2

(central difference formulation) ,

(29)

where Δ = 0.01 in this case; the subscript 𝑎 represents
the 𝑎th point to evaluate its derivative; Φ

±𝑏Δ

𝑖
represents

the function value (𝑥 or 𝑦) from the 𝑎th point plus or
minus 𝑏Δ distance. Since the boundary-unknown solving step
has been finished, any function value can be obtained by
using (4) explicitly, without constraint on the grid nodes.
These difference formulations are applied either along or
perpendicular to the boundaries. The positions of Φ are all
set within the rectangular region.
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Figure 21:The derivative, 𝜕𝜂/𝜕𝑥, on (a) AB, (b) BC, (c) CD, and (d) DA sections of the wave-block boundaries.The results obtained by using
the proposed scheme and FDM are consistent on each section.

The derivatives of the conformal mapping, 𝜕𝜂/𝜕𝑥 and
𝜕𝜂/𝜕𝑦, on the boundaries of the wave-block region evaluated
by the two numerical methods are shown in Figures 21(a)–
21(d) and 22(a)–22(d), respectively. The results of 𝜕𝜂/𝜕𝑦 are
observed to be consistent on each section of the boundaries,
while 𝜕𝜂/𝜕𝑥 are observed with some difference on AB, CD,
and DA sections. Because the boundary conditions enforce
𝜕𝜂/𝜕𝑥 = 0 on AB, CD, and DA sections, the nonzero values
on these sections are numerical errors. Although the numer-
ical errors of present scheme are observed to be higher than

FDM on DA section, their absolute values are constrained
below a small value of about 3 × 10

−7. On the other hand, the
absolute values of numerical errors of FDM are observed to
be about 5 × 10

−4 on AB and CD sections, much higher than
the errors of the present scheme. Similar results take place on
𝜕𝜉/𝜕𝑥 and 𝜕𝜉/𝜕𝑦, which are not shown in this paper for ele-
gance. Despite the tiny numerical errors, the boundary deri-
vatives are observed to be consistent by using the pro-
posed scheme and FDM. These consistent results demon-
strate that the proposed scheme can be applied to irregular
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Figure 22:The derivative, 𝜕𝜂/𝜕𝑦, on (a) AB, (b) BC, (c) CD, and (d) DA sections of the wave-block boundaries.The results obtained by using
the proposed scheme and FDM are consistent on each section.

regions that have no analytical solutions for the conformal
mapping. Since the improved boundary derivative formula-
tions proposed in this research are coupled with the Cauchy-
Riemann equations, their accuracy are affected by the correct-
ness of the length-to-width ratio of the rectangular region.
The consistent results of the boundary derivatives validate not
only the proposed boundary derivative formulations but also
the integral method for the length-to-width ratio.

6. Conclusions

A numerical integral method to find the length-to-width
ratio of the rectangular region that fitted Cauchy-Riemann

equations is proposed in this research. An arc example
demonstrates that the numerical results can approach the
analytical solution with negligible error (1.55 × 10

−5%).
A wave-block example shows that by using the length-to-
width ratio produced by the proposed integral method the
conformal mapping can perform successfully.

By applying the geometric property of the transformed
rectangular region and the Cauchy-Riemann equations, the
derivatives and Jacobian determinant of the numerical con-
formal mapping method developed by Tsay and Hsu [16] can
be evaluated on the boundaries, and more accurate results
are obtained. The approach for calculating the Jacobian
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determinant at the source points adopted in the present
numerical scheme can produce numerical results that are
more accurate than the conventional approach. Although the
derivatives and the Jacobian determinant at the four corners
of the transformed rectangular region cannot be improved
by the present scheme, this research was able to improve
the accuracy of the numerical conformal mapping on the
boundaries and makes the mapping method more reliable
when solving problems that are sensitive to accuracy.
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