3,263 research outputs found
Remote Sensing Application to Grassland Monitoring
Application of remote sensing to the management of grassland resources, the role this plays in developing sustainable grassland farming systems and opportunities for further development are outlined. Use of remote sensing technologies in grassland monitoring has a history of more than 30 years. Both fine- and coarse-grained remote sensing techniques are used to monitor and study grasslands. Fine-grained techniques are used to study landscape scale processes through the use of sensors providing spatial resolution of a few meters, whereas coarse-grained techniques are used to study catchment scale areas, and even entire biomes, using satellite-based sensors with a spatial resolution of kilometers. Remote sensing information is obtained from aerial photography, radar systems, video systems, and satellite-based sensors including the Landsat satellites’ Multispectral Scanner (MSS) and Thematic mapper (TM) and the National Oceanic and Atmospheric Administration (NOAA) polar orbiters’ Advanced Very High Resolution Radiometer (AVHRR). Various normalized difference vegetation indices (NDVI) have been developed and used extensively with data from the Landsat sensors (MSS and TM) and NOAA’s AVHRR. The NDVI has been used for grassland classification and inventory, monitoring grassland-use change, determination of site productivity and herbivore carrying capacity, water and soil conservation, integrated management of grassland pests, and suitability for recreational use and wild life protection. Special techniques have also been developed for monitoring where fires occur on grasslands. To date the remote sensing techniques have become a powerful tool for scientists, farmers and policy makers to study and manage grassland resources. World demand for sustainable development of grasslands will increase the reliance on remote sensing as a tool in grassland management. However, the adaptation of existing remote sensing technology in grassland management will require more scientists and technicians to be trained in both remote sensing and grassland science. Additional training programs targeting scientists in developing countries will be needed. System approaches will be required that lead to better understanding of the interfacing of ground and remote sensing data sets. There is also a need for research on low cost, high resolution systems to be flown from aircraft and helicopters using narrow filters for assessing the condition of grassland health
Theoretical study of the synthesis of superheavy nuclei with Z= 119 and 120 in heavy-ion reactions with trans-uranium targets
By using a newly developed di-nuclear system model with a dynamical potential
energy surface---the DNS-DyPES model, hot fusion reactions for synthesizing
superheavy nuclei (SHN) with the charge number Z = 112-120 are studied. The
calculated evaporation residue cross sections are in good agreement with
available data. In the reaction 50Ti+249Bk -> (299-x)119 + xn, the maximal
evaporation residue (ER) cross section is found to be about 0.11 pb for the
4n-emission channel. For projectile-target combinations producing SHN with
Z=120, the ER cross section increases with the mass asymmetry in the incident
channel increasing. The maximal ER cross sections for 58Fe+244Pu and 54Cr +
248Cm are relatively small (less than 0.01 pb) and those for 50Ti+249Cf and
50Ti+251Cf are about 0.05 and 0.25 pb, respectively.Comment: 6 pages, 5 figures; Phys. Rev. C, in pres
Joint measurement of multiple noncommuting parameters
Although quantum metrology allows us to make precision measurements beyond the standard quantum limit, it mostly works on the measurement of only one observable due to the Heisenberg uncertainty relation on the measurement precision of noncommuting observables for one system. In this paper, we study the schemes of joint measurement of multiple observables which do not commute with each other using the quantum entanglement between two systems. We focus on analyzing the performance of a SU(1,1) nonlinear interferometer on fulfilling the task of joint measurement. The results show that the information encoded in multiple noncommuting observables on an optical field can be simultaneously measured with a signal-to-noise ratio higher than the standard quantum limit, and the ultimate limit of each observable is still the Heisenberg limit. Moreover, we find a resource conservation rule for the joint measurement
Molecular characterization and expression of DgZFP1, a gene encoding a single zinc finger protein in chrysanthemum
A single zinc finger protein gene was isolated from chrysanthemum by rapid amplification of cDNA ends (RACE) approach and was designated as DgZFP1. The DgZFP1 encodes a protein of 168 amino acids residues with a calculated molecular mass of 18.1 kDa and theoretical isoelectric point is 4.71. DgZFP1 contains one single zinc finger motif and one ethylene-responsive element-binding factor (ERF)-associated amphiphilic repression (EAR) domain. The transcripts of DgZFP1 was enriched in nodes and ray petal than in disc petal, disc stamen, disc pistil and ray pistil, but not detected in other tissues. Subcellular localization revealed that DgZFP1 was preferentially distributed to nucleus. We argued that DgZFP1 is a new member of the single zinc finger protein genes and it may be the ortholog of LIF
Possible Way to Synthesize Superheavy Element Z=117
Within the framework of the dinuclear system model, the production of
superheavy element Z=117 in possible projectile-target combinations is analyzed
systematically. The calculated results show that the production cross sections
are strongly dependent on the reaction systems. Optimal combinations,
corresponding excitation energies and evaporation channels are proposed in this
letter, such as the isotopes ^{248,249}Bk in ^{48}Ca induced reactions in 3n
evaporation channels and the reactions ^{45}Sc+^{246,248}Cm in 3n and 4n
channels, and the system ^{51}V+^{244}Pu in 3n channel.Comment: 10 pages, 4 figures, 1 tabl
Human treelike tubular structure segmentation: A comprehensive review and future perspectives
Various structures in human physiology follow a treelike morphology, which often expresses complexity at very fine scales. Examples of such structures are intrathoracic airways, retinal blood vessels, and hepatic blood vessels. Large collections of 2D and 3D images have been made available by medical imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), Optical coherence tomography (OCT) and ultrasound in which the spatial arrangement can be observed. Segmentation of these structures in medical imaging is of great importance since the analysis of the structure provides insights into disease diagnosis, treatment planning, and prognosis. Manually labelling extensive data by radiologists is often time-consuming and error-prone. As a result, automated or semi-automated computational models have become a popular research field of medical imaging in the past two decades, and many have been developed to date. In this survey, we aim to provide a comprehensive review of currently publicly available datasets, segmentation algorithms, and evaluation metrics. In addition, current challenges and future research directions are discussed
Pyrosequencing based analysis of soil bacterial communities under long-term soil tillage and crop residue management in semiarid environments
Non-Peer Reviewe
- …