6,321 research outputs found

    Efficient Optimization of Performance Measures by Classifier Adaptation

    Full text link
    In practical applications, machine learning algorithms are often needed to learn classifiers that optimize domain specific performance measures. Previously, the research has focused on learning the needed classifier in isolation, yet learning nonlinear classifier for nonlinear and nonsmooth performance measures is still hard. In this paper, rather than learning the needed classifier by optimizing specific performance measure directly, we circumvent this problem by proposing a novel two-step approach called as CAPO, namely to first train nonlinear auxiliary classifiers with existing learning methods, and then to adapt auxiliary classifiers for specific performance measures. In the first step, auxiliary classifiers can be obtained efficiently by taking off-the-shelf learning algorithms. For the second step, we show that the classifier adaptation problem can be reduced to a quadratic program problem, which is similar to linear SVMperf and can be efficiently solved. By exploiting nonlinear auxiliary classifiers, CAPO can generate nonlinear classifier which optimizes a large variety of performance measures including all the performance measure based on the contingency table and AUC, whilst keeping high computational efficiency. Empirical studies show that CAPO is effective and of high computational efficiency, and even it is more efficient than linear SVMperf.Comment: 30 pages, 5 figures, to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence, 201

    The Structure of the Cold Neutral ISM on 10-100 Astronomical Unit Scales

    Full text link
    We have used the Very Long Baseline Array (VLBA) and the Very Large Array (VLA) to image Galactic neutral hydrogen in absorption towards four compact extragalactic radio sources with 10 milliarcsecond resolution. Previous VLBA data by Faison et al (1998) have shown the existence of prominent structures in the direction of the extragalactic source 3C~138 with scale sizes of 10-20 AU with changes in HI optical depth in excess of 0.8 ±\pm 0.1. In this paper we confirm the small scale \hi optical depth variations toward 3C~147 suggested earlier at a level up to 20 % ±\pm 5% . The sources 3C~119, 2352+495 and 0831+557 show no significant change in \hi optical depth across the sources with one sigma limits of 30%, 50%, and 100%. Of the seven sources recently investigated with the VLBA and VLA, only 3C~138 and 3C~147 show statistically significant variations in HI opacities. Deshpande (2000) have attempted to explain the observed small-scale structure as an extension of the observed power spectrum of structure on parsec size scales. The predictions of Deshpande (2000) are consistent with the VLBA HI data observed in the directions of a number of sources, including 3C~147, but are not consistent with our previous observations of the HI opacity structure toward 3C~138

    On Markov parameters in system identification

    Get PDF
    A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest

    Identification of linear multivariable systems from a single set of data by identification of observers with assigned real eigenvalues

    Get PDF
    A formulation is presented for identification of linear multivariable from a single set of input-output data. The identification method is formulated with the mathematical framework of learning identifications, by extension of the repetition domain concept to include shifting time intervals. This method contrasts with existing learning approaches that require data from multiple experiments. In this method, the system input-output relationship is expressed in terms of an observer, which is made asymptotically stable by an embedded real eigenvalue assignment procedure. Through this relationship, the Markov parameters of the observer are identified. The Markov parameters of the actual system are recovered from those of the observer, and then used to obtain a state space model of the system by standard realization techniques. The basic mathematical formulation is derived, and numerical examples presented to illustrate

    Effect of Local Population Uncertainty on Cooperation in Bacteria

    Full text link
    Bacteria populations rely on mechanisms such as quorum sensing to coordinate complex tasks that cannot be achieved by a single bacterium. Quorum sensing is used to measure the local bacteria population density, and it controls cooperation by ensuring that a bacterium only commits the resources for cooperation when it expects its neighbors to reciprocate. This paper proposes a simple model for sharing a resource in a bacterial environment, where knowledge of the population influences each bacterium's behavior. Game theory is used to model the behavioral dynamics, where the net payoff (i.e., utility) for each bacterium is a function of its current behavior and that of the other bacteria. The game is first evaluated with perfect knowledge of the population. Then, the unreliability of diffusion introduces uncertainty in the local population estimate and changes the perceived payoffs. The results demonstrate the sensitivity to the system parameters and how population uncertainty can overcome a lack of explicit coordination.Comment: 5 pages, 6 figures. Will be presented as an invited paper at the 2017 IEEE Information Theory Workshop in November 2017 in Kaohsiung, Taiwa

    Comparison of several system identification methods for flexible structures

    Get PDF
    In the last few years various methods of identifying structural dynamics models from modal testing data have appeared. A comparison is presented of four of these algorithms: the Eigensystem Realization Algorithm (ERA), the modified version ERA/DC where DC indicated that it makes use of data correlation, the Q-Markov Cover algorithm, and an algorithm due to Moonen, DeMoor, Vandenberghe, and Vandewalle. The comparison is made using a five mode computer module of the 20 meter Mini-Mast truss structure at NASA Langley Research Center, and various noise levels are superimposed to produced simulated data. The results show that for the example considered ERA/DC generally gives the best results; that ERA/DC is always at least as good as ERA which is shown to be a special case of ERA/DC; that Q-Markov requires the use of significantly more data than ERA/DC to produce comparable results; and that is some situations Q-Markov cannot produce comparable results
    corecore