161 research outputs found

    A customer segmentation framework for targeted marketing in telecommunication

    Full text link
    © 2017 IEEE. Telecommunication industry is highly competitive, and mass marketing is not applicable anymore. Moreover, Mobile customers have different behaviors that urge telecom industries to differentiate their strategies to meet customers' needs. At the same time, mobile operators have an enormous amount of customer records, and data-driven approaches can help them to draw insights from this huge amount of data. Therefore, a data-driven segmentation approach can support marketing strategies to tailor their marketing plans. In this research, we adopt behavior and beneficial segmentation in a two-dimensional framework to segment customers. The results indicate that our method has an outstanding performance for customer segmentation. Moreover, we have recommended some marketing strategies based on each segment's behavior with the aim of increasing in Average Revenue Per User (ARPU) and decreasing in marketing expenses

    Credit risk prediction in an imbalanced social lending environment

    Full text link
    © 2018, the Authors. Credit risk prediction is an effective way of evaluating whether a potential borrower will repay a loan, particularly in peer-to-peer lending where class imbalance problems are prevalent. However, few credit risk prediction models for social lending consider imbalanced data and, further, the best resampling technique to use with imbalanced data is still controversial. In an attempt to address these problems, this paper presents an empirical comparison of various combinations of classifiers and resampling techniques within a novel risk assessment methodology that incorporates imbalanced data. The credit predictions from each combination are evaluated with a G-mean measure to avoid bias towards the majority class, which has not been considered in similar studies. The results reveal that combining random forest and random under-sampling may be an effective strategy for calculating the credit risk associated with loan applicants in social lending markets

    Dietary fat and corticosterone levels are contributing factors to meal anticipation

    Get PDF
    Daily restricted access to food leads to the development of food anticipatory activity and metabolism, which depends upon an as yet unidentified food-entrainable oscillator(s). A premeal anticipatory peak in circulating hormones, including corticosterone is also elicited by daily restricted feeding. High-fat feeding is associated with elevated levels of corticosterone with disrupted circadian rhythms and a failure to develop robust meal anticipation. It is not clear whether the disrupted corticosterone rhythm, resulting from high-fat feeding contributes to attenuated meal anticipation in high-fat fed rats. Our aim was to better characterize meal anticipation in rats fed a low- or high-fat diet, and to better understand the role of corticosterone in this process. To this end, we utilized behavioral observations, hypothalamic c-Fos expression, and indirect calorimetry to assess meal entrainment. We also used the glucocorticoid receptor antagonist, RU486, to dissect out the role of corticosterone in meal anticipation in rats given daily access to a meal with different fat content. Restricted access to a low-fat diet led to robust meal anticipation, as well as entrainment of hypothalamic c-Fos expression, metabolism, and circulating corticosterone. These measures were significantly attenuated in response to a high-fat diet, and animals on this diet exhibited a postanticipatory rise in corticosterone. Interestingly, antagonism of glucocorticoid activity using RU486 attenuated meal anticipation in low-fat fed rats, but promoted meal anticipation in high-fat-fed rats. These findings suggest an important role for corticosterone in the regulation of meal anticipation in a manner dependent upon dietary fat content

    Experimental and Numerical Investigation of the Efficiency and Pressure Drop of an Inertial Impactor with Variable Area

    Get PDF
    The deposition efficiency and pressure drop of inertial impactor with variable area has been studied numerically and experimentally. The effect of volumetric flow rate, vertical barrier, oblique barrier and flexible concave plate versus deposition and impaction efficiency and pressure drop is investigated. Numerical simulation is carried out with DPM (discrete phase method) and turbulent model of SST k-ω. To validate the numerical results a special test rig is designed to study the deposition efficiency of engine oil droplets (blow-by) with a diameter of 0.1 to 6 µm. Experimental Tests are done in 8, 12, 16 and 20 L/min. To ensure the accuracy of the experimental results, all the tests are repeated at least three times for each volumetric flow rate. Gravimetric method is implemented to calculate the deposition efficiency. According to the results, the deposition efficiency is obtained between 73 and 94 percent for different mentioned impactors and different volumetric flow rate. The numerical results are confirmed by experimental results. Using the barriers increase the efficiency maximum 6 percent in different volumetric flow rate. The results show that by reducing the distance between the vertical barrier and the outlet of nozzle, the deposition and impaction efficiency are increased. Also, the Concave flexible plate with vertical barrier located at 1 mm from the outlet of nozzle is the most efficient case

    Reversible energy absorption of elasto-plastic auxetic, hexagonal, and AuxHex structures fabricated by FDM 4D printing

    Get PDF
    The present study aims at introducing reconfigurable mechanical metamaterials by utilising four-dimensional (4D) printing process for recoverable energy dissipation and absorption applications with shape memory effects. The architected mechanical metamaterials are designed as a repeating arrangement of re-entrant auxetic, hexagonal, and AuxHex unit-cells and manufactured using 3D printing fused deposition modelling process. The AuxHex cellular structure is composed of auxetic re-entrant and hexagonal components. Architected cellular metamaterials are developed based on a comprehension of the elasto-plastic features of shape memory polylactic acid materials and cold programming deduced from theory and experiments. Computational models based on ABAQUS/Standard are used to simulate the mechanical properties of the 4D-printed mechanical metamaterials under quasi-static uniaxial compression loading, and the results are validated by experimental data. Research trials show that metamaterial with re-entrant auxetic unit-cells has better energy absorption capability compared to the other structures studied in this paper, mainly because of the unique deformation mechanisms of unit-cells. It is shown that mechanical metamaterials with elasto-plastic behaviors exhibit mechanical hysteresis and energy dissipation when undergoing a loading-unloading cycle. It is experimentally revealed that the residual plastic strain and dissipation processes induced by cold programming are completely reversible through simple heating. The results and concepts presented in this work can potentially be useful towards 4D printing reconfigurable cellular structures for reversible energy absorption and dissipation engineering applications

    Effect of temperature on life table parameters of Diaphania indica (Lep.: Pyralidae) under laboratory conditions

    Get PDF
    The cucumber moth, Diaphania indica (Saunders), is a tropical and sub-tropical pest on cucurbits and a key pest of greenhouse crops in Jiroft region of Iran. The effect of temperature on life table parameters of this pest was investigated in a growth chamber at four constant temperatures i.e. 20, 25, 30 and 35 ºC on Cucumis sativus L. The net reproductive rates (R0) were found to be 68.19, 120.977, 64.05 and 21.23, respectively. The intrinsic rates of increase (rm) were 0.0619, 0.1746, 0.1934 and 0.1491, and mean generation times (T) were 69.063, 27.45, 21.49 and 20.44, respectively. According to the results, for the intrinsic rate of increase (rm), finite rate of increase (λ) and intrinsic birth rate (b), the optimum temperature was 30 ºC and the least suitable temperature was 20 ºC
    corecore