11 research outputs found

    LLIN evaluation in Uganda project (LLINEUP2): association between housing construction and malaria burden in 32 districts

    Get PDF
    Background: Well-built housing limits mosquito entry and can reduce malaria transmission. The association between community-level housing and malaria burden in Uganda was assessed using data from randomly selected households near 64 health facilities in 32 districts. Methods: Houses were classified as ‘improved’ (synthetic walls and roofs, eaves closed or absent) or ‘less-improved’ (all other construction). Associations between housing and parasitaemia were made using mixed effects logistic regression (individual-level) and multivariable fractional response logistic regression (community-level), and between housing and malaria incidence using multivariable Poisson regression. Results: Between November 2021 and March 2022, 4.893 children aged 2–10 years were enrolled from 3.518 houses; of these, 1.389 (39.5%) were classified as improved. Children living in improved houses had 58% lower odds (adjusted odds ratio = 0.42, 95% CI 0.33–0.53, p 67% of houses improved had a 63% lower parasite prevalence (adjusted prevalence ratio 0.37, 95% CI 0.19–0.70, p < 0.0021) and 60% lower malaria incidence (adjusted incidence rate ratio 0.40, 95% CI 0.36–0.44, p < 0.0001) compared to communities with < 39% of houses improved. Conclusions: Improved housing was strongly associated with lower malaria burden across a range of settings in Uganda and should be utilized for malaria control

    Impact of COVID-19 on routine malaria indicators in rural Uganda: an interrupted time series analysis.

    Get PDF
    BACKGROUND: In March 2020, the government of Uganda implemented a strict lockdown policy in response to the COVID-19 pandemic. Interrupted time series analysis (ITSA) was performed to assess whether major changes in outpatient attendance, malaria burden, and case management occurred after the onset of the COVID-19 epidemic in rural Uganda. METHODS: Individual level data from all outpatient visits collected from April 2017 to March 2021 at 17 facilities were analysed. Outcomes included total outpatient visits, malaria cases, non-malarial visits, proportion of patients with suspected malaria, proportion of patients tested using rapid diagnostic tests (RDTs), and proportion of malaria cases prescribed artemether-lumefantrine (AL). Poisson regression with generalized estimating equations and fractional regression was used to model count and proportion outcomes, respectively. Pre-COVID trends (April 2017-March 2020) were used to predict the'expected' trend in the absence of COVID-19 introduction. Effects of COVID-19 were estimated over two six-month COVID-19 time periods (April 2020-September 2020 and October 2020-March 2021) by dividing observed values by expected values, and expressed as ratios. RESULTS: A total of 1,442,737 outpatient visits were recorded. Malaria was suspected in 55.3% of visits and 98.8% of these had a malaria diagnostic test performed. ITSA showed no differences between observed and expected total outpatient visits, malaria cases, non-malarial visits, or proportion of visits with suspected malaria after COVID-19 onset. However, in the second six months of the COVID-19 time period, there was a smaller mean proportion of patients tested with RDTs compared to expected (relative prevalence ratio (RPR) = 0.87, CI (0.78-0.97)) and a smaller mean proportion of malaria cases prescribed AL (RPR = 0.94, CI (0.90-0.99)). CONCLUSIONS: In the first year after the COVID-19 pandemic arrived in Uganda, there were no major effects on malaria disease burden and indicators of case management at these 17 rural health facilities, except for a modest decrease in the proportion of RDTs used for malaria diagnosis and the mean proportion of malaria cases prescribed AL in the second half of the COVID-19 pandemic year. Continued surveillance will be essential to monitor for changes in trends in malaria indicators so that Uganda can quickly and flexibly respond to challenges imposed by COVID-19

    Gender difference in the incidence of malaria diagnosed at public health facilities in Uganda.

    Get PDF
    BACKGROUND: Routine malaria surveillance data in Africa primarily come from public health facilities reporting to national health management information systems. Although information on gender is routinely collected from patients presenting to these health facilities, stratification of malaria surveillance data by gender is rarely done. This study evaluated gender difference among patients diagnosed with parasitological confirmed malaria at public health facilities in Uganda. METHODS: This study utilized individual level patient data collected from January 2020 through April 2021 at 12 public health facilities in Uganda and cross-sectional surveys conducted in target areas around these facilities in April 2021. Associations between gender and the incidence of malaria and non-malarial visits captured at the health facilities from patients residing within the target areas were estimated using poisson regression models controlling for seasonality. Associations between gender and data on health-seeking behaviour from the cross-sectional surveys were estimated using poisson regression models controlling for seasonality. RESULTS: Overall, incidence of malaria diagnosed per 1000 person years was 735 among females and 449 among males (IRR = 1.72, 95% CI 1.68-1.77, p < 0.001), with larger differences among those 15-39 years (IRR = 2.46, 95% CI 2.34-2.58, p < 0.001) and over 39 years (IRR = 2.26, 95% CI 2.05-2.50, p < 0.001) compared to those under 15 years (IRR = 1.46, 95% CI 1.41-1.50, p < 0.001). Female gender was also associated with a higher incidence of visits where malaria was not suspected (IRR = 1.77, 95% CI 1.71-1.83, p < 0.001), with a similar pattern across age strata. These associations were consistent across the 12 individual health centres. From the cross-sectional surveys, females were more likely than males to report fever in the past 2 weeks and seek care at the local health centre (7.5% vs. 4.7%, p = 0.001) with these associations significant for those 15-39 years (RR = 2.49, 95% CI 1.17-5.31, p = 0.018) and over 39 years (RR = 2.56, 95% CI 1.00-6.54, p = 0.049). CONCLUSIONS: Females disproportionately contribute to the burden of malaria diagnosed at public health facilities in Uganda, especially once they reach childbearing age. Contributing factors included more frequent visits to these facilities independent of malaria and a higher reported risk of seeking care at these facilities for febrile illnesses

    Resurgence of malaria in Uganda despite sustained indoor residual spraying and repeated long lasting insecticidal net distributions

    Get PDF
    Five years of sustained indoor residual spraying (IRS) of insecticide from 2014 to 2019, first using a carbamate followed by an organophosphate, was associated with a marked reduction in the incidence of malaria in five districts of Uganda. We assessed changes in malaria incidence over an additional 21 months, corresponding to a change in IRS formulations using clothianidin with and without deltamethrin. Using enhanced health facility surveillance data, our objectives were to 1) estimate the impact of IRS on monthly malaria case counts at five surveillance sites over a 6.75 year period, and 2) compare monthly case counts at five facilities receiving IRS to ten facilities in neighboring districts not receiving IRS. For both objectives, we specified mixed effects negative binomial regression models with random intercepts for surveillance site adjusting for rainfall, season, care-seeking, and malaria diagnostic. Following the implementation of IRS, cases were 84% lower in years 4–5 (adjusted incidence rate ratio [aIRR] = 0.16, 95% CI 0.12–0.22), 43% lower in year 6 (aIRR = 0.57, 95% CI 0.44–0.74), and 39% higher in the first 9 months of year 7 (aIRR = 1.39, 95% CI 0.97–1.97) compared to pre-IRS levels. Cases were 67% lower in IRS sites than non-IRS sites in year 6 (aIRR = 0.33, 95% CI 0.17–0.63) but 38% higher in the first 9 months of year 7 (aIRR = 1.38, 95% CI 0.90–2.11). We observed a resurgence in malaria to pre-IRS levels despite sustained IRS. The timing of this resurgence corresponded to a change of active ingredient. Further research is needed to determine causality

    East Africa International Center of Excellence for Malaria Research: Impact on Malaria Policy in Uganda

    Get PDF
    Malaria is the leading cause of disease burden in sub-Saharan Africa. In 2010, the East Africa International Center of Excellence for Malaria Research, also known as the Program for Resistance, Immunology, Surveillance, and Modeling of Malaria (PRISM), was established to provide a comprehensive approach to malaria surveillance in Uganda. We instituted cohort studies and a robust malaria and entomological surveillance network at selected public health facilities that have provided a platform for monitoring trends in malaria morbidity and mortality, tracking the impact of malaria control interventions (indoor residual spraying of insecticide [IRS], use of long-lasting insecticidal nets [LLINs], and case management with artemisinin-based combination therapies [ACTs]), as well as monitoring of antimalarial drug and insecticide resistance. PRISM studies have informed Uganda's malaria treatment policies, guided selection of LLINs for national distribution campaigns, and revealed widespread pyrethroid resistance, which led to changes in insecticides delivered through IRS. Our continuous engagement and interaction with policy makers at the Ugandan Ministry of Health have enabled PRISM to share evidence, best practices, and lessons learned with key malaria stakeholders, participate in malaria control program reviews, and contribute to malaria policy and national guidelines. Here, we present an overview of interactions between PRISM team members and Ugandan policy makers to demonstrate how PRISM's research has influenced malaria policy and control in Uganda

    The impact of stopping and starting indoor residual spraying on malaria burden in Uganda.

    Get PDF
    The scale-up of malaria control efforts has led to marked reductions in malaria burden over the past twenty years, but progress has slowed. Implementation of indoor residual spraying (IRS) of insecticide, a proven vector control intervention, has been limited and difficult to sustain partly because questions remain on its added impact over widely accepted interventions such as bed nets. Using data from 14 enhanced surveillance health facilities in Uganda, a country with high bed net coverage yet high malaria burden, we estimate the impact of starting and stopping IRS on changes in malaria incidence. We show that stopping IRS was associated with a 5-fold increase in malaria incidence within 10 months, but reinstating IRS was associated with an over 5-fold decrease within 8 months. In areas where IRS was initiated and sustained, malaria incidence dropped by 85% after year 4. IRS could play a critical role in achieving global malaria targets, particularly in areas where progress has stalled

    Malaria hospitalisation in East Africa: age, phenotype and transmission intensity.

    Get PDF
    BACKGROUND: Understanding the age patterns of disease is necessary to target interventions to maximise cost-effective impact. New malaria chemoprevention and vaccine initiatives target young children attending routine immunisation services. Here we explore the relationships between age and severity of malaria hospitalisation versus malaria transmission intensity. METHODS: Clinical data from 21 surveillance hospitals in East Africa were reviewed. Malaria admissions aged 1 month to 14 years from discrete administrative areas since 2006 were identified. Each site-time period was matched to a model estimated community-based age-corrected parasite prevalence to provide predictions of prevalence in childhood (PfPR2-10). Admission with all-cause malaria, severe malaria anaemia (SMA), respiratory distress (RD) and cerebral malaria (CM) were analysed as means and predicted probabilities from Bayesian generalised mixed models. RESULTS: 52,684 malaria admissions aged 1 month to 14 years were described at 21 hospitals from 49 site-time locations where PfPR2-10 varied from < 1 to 48.7%. Twelve site-time periods were described as low transmission (PfPR2-10 < 5%), five low-moderate transmission (PfPR2-10 5-9%), 20 moderate transmission (PfPR2-10 10-29%) and 12 high transmission (PfPR2-10 ≥ 30%). The majority of malaria admissions were below 5 years of age (69-85%) and rare among children aged 10-14 years (0.7-5.4%) across all transmission settings. The mean age of all-cause malaria hospitalisation was 49.5 months (95% CI 45.1, 55.4) under low transmission compared with 34.1 months (95% CI 30.4, 38.3) at high transmission, with similar trends for each severe malaria phenotype. CM presented among older children at a mean of 48.7 months compared with 39.0 months and 33.7 months for SMA and RD, respectively. In moderate and high transmission settings, 34% and 42% of the children were aged between 2 and 23 months and so within the age range targeted by chemoprevention or vaccines. CONCLUSIONS: Targeting chemoprevention or vaccination programmes to areas where community-based parasite prevalence is ≥10% is likely to match the age ranges covered by interventions (e.g. intermittent presumptive treatment in infancy to children aged 2-23 months and current vaccine age eligibility and duration of efficacy) and the age ranges of highest disease burden

    LLIN Evaluation in Uganda Project (LLINEUP): modelling the impact of COVID-19-related disruptions on delivery of long-lasting insecticidal nets on malaria indicators in Uganda

    No full text
    Background: Disruptions in malaria control due to COVID-19 mitigation measures were predicted to increase malaria morbidity and mortality in Africa substantially. In Uganda, long-lasting insecticidal nets (LLINs) are distributed nationwide every 3–4 years, but the 2020–2021 campaign was altered because of COVID-19 restrictions so that the timing of delivery of new nets was different from the original plans made by the National Malaria Control Programme. Methods: A transmission dynamics modelling exercise was conducted to explore how the altered delivery of LLINs in 2020–2021 impacted malaria burden in Uganda. Data were available on the planned LLIN distribution schedule for 2020–2021, and the actual delivery. The transmission model was used to simulate 100 health sub-districts, and parameterized to match understanding of local mosquito bionomics, net use estimates, and seasonal patterns based on data collected in 2017–2019 during a cluster-randomized trial (LLINEUP). Two scenarios were compared; simulated LLIN distributions matching the actual delivery schedule, and a comparable scenario simulating LLIN distributions as originally planned. Model parameters were otherwise matched between simulations. Results: Approximately 70% of the study population received LLINs later than scheduled in 2020–2021, although some areas received LLINs earlier than planned. The model indicates that malaria incidence in 2020 was substantially higher in areas that received LLINs late. In some areas, early distribution of LLINs appeared less effective than the original distribution schedule, possibly due to attrition of LLINs prior to transmission peaks, and waning LLIN efficacy after distribution. On average, the model simulations predicted broadly similar overall mean malaria incidence in 2021 and 2022. After accounting for differences in cluster population size and LLIN distribution dates, no substantial increase in malaria burden was detected. Conclusions: The model results suggest that the disruptions in the 2020–2021 LLIN distribution campaign in Uganda did not substantially increase malaria burden in the study areas

    Evolution of Partial Resistance to Artemisinins in Malaria Parasites in Uganda.

    No full text
    BACKGROUND: Partial resistance of Plasmodium falciparum to the artemisinin component of artemisinin-based combination therapies, the most important malaria drugs, emerged in Southeast Asia and now threatens East Africa. Partial resistance, which manifests as delayed clearance after therapy, is mediated principally by mutations in the kelch protein K13 (PfK13). Limited longitudinal data are available on the emergence and spread of artemisinin resistance in Africa. METHODS: We performed annual surveillance among patients who presented with uncomplicated malaria at 10 to 16 sites across Uganda from 2016 through 2022. We sequenced the gene encoding kelch 13 ( RESULTS: By 2021-2022, the prevalence of parasites with validated or candidate resistance markers reached more than 20% in 11 of the 16 districts where surveillance was conducted. The PfK13 469Y and 675V mutations were seen in far northern Uganda in 2016-2017 and increased and spread thereafter, reaching a combined prevalence of 10 to 54% across much of northern Uganda, with spread to other regions. The 469F mutation reached a prevalence of 38 to 40% in one district in southwestern Uganda in 2021-2022. The 561H mutation, previously described in Rwanda, was first seen in southwestern Uganda in 2021, reaching a prevalence of 23% by 2022. The 441L mutation reached a prevalence of 12 to 23% in three districts in western Uganda in 2022. Genetic analysis indicated local emergence of mutant parasites independent of those in Southeast Asia. The emergence of resistance was observed predominantly in areas where effective malaria control had been discontinued or transmission was unstable. CONCLUSIONS: Data from Uganda showed the emergence of partial resistance to artemisinins in multiple geographic locations, with increasing prevalence and regional spread over time. (Funded by the National Institutes of Health.)
    corecore