4 research outputs found

    Development of an Escherichia coli–Lactobacillus casei shuttle vector for heterologous protein expression in Lactobacillus casei

    Get PDF
    There is an increasing interest to develop various lactic acid bacteria (LAB) species as mucosal delivery vehicles, for which the development of a variety of cloning and expression systems for these bacteria is of primary importance. This study reports the complete nucleotide sequence of the cryptic plasmid pRCEID7.6 derived from the chicken probiotic LAB strain Lactobacillus casei TISTR1341. Sequence analysis and comparison showed that pRCEID7.6 is composed of nine putative open reading frames. The replicon origin of pRCEID7.6 consisted of untranslated origin of replication and translated replication protein B sequences. This region was used to construct Escherichia coli/L. casei shuttle vectors carrying erythromycin and chloramphenicol resistance genes as selective markers. Segregation and structural stability of the vectors in L. casei was sufficient for most genetic applications. The feasibility of this vector for heterologous protein expression in L. casei was determined by cloning in pRCEID-LC7.6, the gene encoding the nucleocapsid protein (NP), from the influenza A virus under the control of the homologous promoter from the lactate dehydrogenase gene. L. casei carrying this recombinant plasmid was shown to successfully express the NP protein. Therefore, this shuttle vector can be used for further study in the development of mucosal delivery vehicles.Peer Reviewe

    Cloning and expression of a codon-optimized gene encoding the infl uenza A virus nucleocapsid protein in Lactobacillus casei

    Get PDF
    Lactic acid bacteria (LAB) species are envisioned as promising vehicles for the mucosal delivery of therapeutic and prophylactic molecules, including the development of oral vaccines. In this study, we report on the expression of a synthetic nucleocapsid (NP) gene of infl uenza A virus in Lactobacillus casei. The NP gene was re-designed based on the tRNA pool and the codon usage preference of L. casei BL23. The codon-optimized NP gene was then cloned and expressed in L. casei RCEID02 under the control of a constitutive promoter, that of the lactate dehydrogenase (ldh) gene. The synthetic NP gene was further expressed in L. casei EM116 under the control of an inducible promoter, that of the structural gene of nisin (nisA) from Lactococcus lactis. Based on Western blot analysis, the specifi c protein band of NP, with a molecular mass of 56.0 kDa, was clearly detected in both expression systems. Thus, our study demonstrates the success of expressing a codon-optimized infl uenza A viral gene in L. casei. The suitability of the recombinant LAB strains for immunization purposes is currently under evaluation. [Int Microbiol 2013; 16(2):93-101]Keywords: Lactobacillus casei; lactic acid bacteria; infl uenza A virus; viral nucleocapsid proteins; heterologous expression; codon usag

    Secretion of M2e:HBc fusion protein by Lactobacillus casei using Cwh signal peptide

    No full text
    The ability to serve as a delivery vehicle for various interesting biomolecules makes lactic acid bacteria (LAB) very useful in several applications. In the medical field, recombinant LAB expressing pathogenic antigens at different cellular locations have been used to elicit both mucosal and systemic immune responses. Expression-secretion vectors (ESVs) with a signal peptide (SP) are pivotal for protein expression and secretion. In this study, the genome sequence of Lactobacillus casei ATCC334 was explored for new SPs using bioinformatics tools. Three new SPs of the proteins Cwh, SurA and SP6565 were identified and used to construct an ESV based on our Escherichia coli-L. casei shuttle vector, pRCEID-LC13.9. Functional testing of these constructs with the green fluorescence protein (GFP) gene showed that they could secrete the GFP. The construct with CwhSP showed the highest GFP secretion. Consequently, CwhSP was selected to develop an ESV construct carrying a synthetic gene encoding the extracellular domain of the matrix 2 protein fused with the hepatitis B core antigen (M2e:HBc). This ESV was shown to efficiently express and secrete the M2e:HBc fusion protein. The identified SPs and the developed ESVs can be exploited for expression and secretion of homologous and heterologous proteins in L. casei.This study was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, Thailand and by the invitation research grant (I57301) from the Faculty of Medicine, Khon Kaen University.Peer Reviewe

    Cloning and expression of a codon-optimized gene encoding the influenza A virus nucleocapsid protein in Lactobacillus casei

    Get PDF
    Lactic acid bacteria (LAB) species are envisioned as promising vehicles for the mucosal delivery of therapeutic and prophylactic molecules, including the development of oral vaccines. In this study, we report on the expression of a synthetic nucleocapsid (NP) gene of influenza A virus in Lactobacillus casei. The NP gene was re-designed based on the tRNA pool and the codon usage preference of L. casei BL23. The codon-optimized NP gene was then cloned and expressed in L. casei RCEID02 under the control of a constitutive promoter, that of the lactate dehydrogenase (ldh) gene. The synthetic NP gene was further expressed in L. casei EM116 under the control of an inducible promoter, that of the structural gene of nisin (nisA) from Lactococcus lactis. Based on Western blot analysis, the specific protein band of NP, with a molecular mass of 56.0 kDa, was clearly detected in both expression systems. Thus, our study demonstrates the success of expressing a codon-optimized influenza A viral gene in L. casei. The suitability of the recombinant LAB strains for immunization purposes is currently under evaluation.This study was supported by the Higher Education Research Promotion and the National Research University Project of Thailand, Office of the Higher Education Commission, and by The National Center for Genetic Engineering and Biotechnology, Thailand.Peer Reviewe
    corecore