134 research outputs found

    Laser Calibration System for Time of Flight Scintillator Arrays

    Full text link
    A laser calibration system was developed for monitoring and calibrating time of flight (TOF) scintillating detector arrays. The system includes setups for both small- and large-scale scintillator arrays. Following test-bench characterization, the laser system was recently commissioned in experimental Hall B at the Thomas Jefferson National Accelerator Facility for use on the new Backward Angle Neutron Detector (BAND) scintillator array. The system successfully provided time walk corrections, absolute time calibration, and TOF drift correction for the scintillators in BAND. This showcases the general applicability of the system for use on high-precision TOF detectors.Comment: 11 pages, 11 figure

    The CLAS12 Backward Angle Neutron Detector (BAND)

    Full text link
    The Backward Angle Neutron Detector (BAND) of CLAS12 detects neutrons emitted at backward angles of 155155^\circ to 175175^\circ, with momenta between 200200 and 600600 MeV/c. It is positioned 3 meters upstream of the target, consists of 1818 rows and 55 layers of 7.27.2 cm by 7.27.2 cm scintillator bars, and read out on both ends by PMTs to measure time and energy deposition in the scintillator layers. Between the target and BAND there is a 2 cm thick lead wall followed by a 2 cm veto layer to suppress gammas and reject charged particles. This paper discusses the component-selection tests and the detector assembly. Timing calibrations (including offsets and time-walk) were performed using a novel pulsed-laser calibration system, resulting in time resolutions better than 250250 ps (150 ps) for energy depositions above 2 MeVee (5 MeVee). Cosmic rays and a variety of radioactive sources were used to calibration the energy response of the detector. Scintillator bar attenuation lengths were measured. The time resolution results in a neutron momentum reconstruction resolution, δp/p<1.5\delta p/p < 1.5\% for neutron momentum 200p600200\le p\le 600 MeV/c. Final performance of the BAND with CLAS12 is shown, including electron-neutral particle timing spectra and a discussion of the off-time neutral contamination as a function of energy deposition threshold.Comment: 17 pages, 25 figures, 3 tables. Accepted for publication in NIM-

    Accessing the strong interaction between Λ baryons and charged kaons with the femtoscopy technique at the LHC

    Get PDF
    The interaction between Λ baryons and kaons/antikaons is a crucial ingredient for the strangeness S=0 and S=-2 sector of the meson–baryon interaction at low energies. In particular, the Lambda-Kbar might help in understanding the origin of states such as the Csi(1620), whose nature and properties are still under debate. Experimental data on Lambda-K and Lambda-Kbar systems are scarce, leading to large uncertainties and tension between the available theoretical predictions constrained by such data. In this Letter we present the measurements of Λ–KK− and Λ–KK+ correlations obtained in the high-multiplicity triggered data sample in pp collisions at sqrt(s) = 13 TeV recorded by ALICE at the LHC. The correlation function for both pairs is modeled using the Lednický–Lyuboshits analytical formula and the corresponding scattering parameters are extracted. The Λ–KK+ correlations show the presence of several structures at relative momenta k* above 200 MeV/c, compatible with the Ω baryon, the , and resonances decaying into Λ–K− pairs. The low k* region in the Λ–KK+ also exhibits the presence of the state, expected to strongly couple to the measured pair. The presented data allow to access the ΛK+ and ΛK− strong interaction with an unprecedented precision and deliver the first experimental observation of the decaying into ΛK−

    Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p-Pb collisions

    Get PDF
    Measurements of the production of electrons from heavy-flavour hadron decays in pp collisions at root s = 13 TeV at midrapidity with the ALICE detector are presented down to a transverse momentum (p(T)) of 0.2 GeV/c and up to p(T) = 35 GeV/c, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p-Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the p(T) range 0.5 < p(T) < 26 GeV/c at root s(NN) = 8.16 TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p-Pb collisions grow faster than linear with the self-normalised multiplicity. A strong p(T) dependence is observed in pp collisions, where the yield of high-p(T) electrons increases faster as a function of multiplicity than the one of low-p(T) electrons. The measurement in p-Pb collisions shows no p(T) dependence within uncertainties. The self-normalised yields in pp and p-Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations

    Measurement of the non-prompt D-meson fraction as a function of multiplicity in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    The fractions of non-prompt (i.e. originating from beauty-hadron decays) D0 and D+ mesons with respect to the inclusive yield are measured as a function of the charged-particle multiplicity in proton-proton collisions at a centre-of-mass energy of √s = 13 TeV with the ALICE detector at the LHC. The results are reported in intervals of transverse momentum (pT) and integrated in the range 1 < pT < 24 GeV/c. The fraction of non-prompt D0 and D+ mesons is found to increase slightly as a function of pT in all the measured multiplicity intervals, while no significant dependence on the charged- particle multiplicity is observed. In order to investigate the production and hadronisation mechanisms of charm and beauty quarks, the results are compared to PYTHIA 8 as well as EPOS 3 and EPOS 4 Monte Carlo simulations, and to calculations based on the colour glass condensate including three-pomeron fusion

    First measurement of Λc+ production down to pT=0 in pp and p-Pb collisions at sNN=5.02 TeV

    Get PDF
    The production of prompt Lambda+c baryons has been measured at midrapidity in the transverse momentum interval 0 < pT < 1 GeV/c for the first time, in pp and p–Pb collisions at a center-of-mass energy per nucleon-nucleon collision √s NN = 5.02 TeV. The measurement was performed in the decay channel Lambda+c → pK0S by applying new decay reconstruction techniques using a Kalman-Filter vertexing algorithm and adopting a machine-learning approach for the candidate selection. The pT -integrated Lambda+c production cross sections in both collision systems were determined and used along with the measured yields in Pb–Pb collisions to compute the pT -integrated nuclear modification factors R pPb and R AA of Lambda+c baryons, which are compared to model calculations that consider nuclear modification of the parton distribution functions. The Lambda+c /D0 baryon-to-meson yield ratio is reported for pp and p–Pb collisions. Comparisons with models that include modified hadronization processes are presented, and the implications of the results on the understanding of charm hadronization in hadronic collisions are discussed. A significant (3.7σ ) modification of the mean transverse momentum of Lambda+c baryons is seen in p–Pb collisions with respect to pp collisions, while the pT -integrated Lambda+c /D0 yield ratio was found to be consistent between the two collision systems within the uncertainties

    Light (anti)nuclei production in Pb-Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the production of deuterons, tritons and 3 He and their antiparticles in Pb-Pb collisions at √s NN = 5.02 TeV is presented in this article. The measurements are carried out at midrapidity (|y| < 0.5) as a function of collision centrality using the ALICE detector. The pT -integrated yields, the coalescence parameters and the ratios to protons and antiprotons are reported and compared with nucleosynthesis models. The comparison of these results in different collision systems at different center-of-mass collision energies reveals a suppression of nucleus production in small systems. In the Statistical Hadronisation Model framework, this can be explained by a small correlation volume where the baryon number is conserved, as already shown in previous fluctuation analyses. However, a different size of the correlation volume is required to describe the proton yields in the same data sets. The coalescence model can describe this suppression by the fact that the wave functions of the nuclei are large and the fireball size starts to become comparable and even much smaller than the actual nucleus at low multiplicities

    Production of pions, kaons, and protons as a function of the relative transverse activity classifier in pp collisions at s \sqrt{s} = 13 TeV

    Get PDF
    Abstract: The production of π±, K±, and ( p )p is measured in pp collisions at √s = 13 TeV in different topological regions of the events. Particle transverse momentum (pT) spectra are measured in the “toward”, “transverse”, and “away” angular regions defined with respect to the direction of the leading particle in the event. While the toward and away regions contain the fragmentation products of the near-side and away-side jets, respectively, the transverse region is dominated by particles from the Underlying Event (UE). The relative transverse activity classifier, RT = NT/〈NT〉, is used to group events according to their UE activity, where NT is the measured charged-particle multiplicity per event in the transverse region and 〈NT〉 is the mean value over all the analysed events. The first measurements of identified particle pT spectra as a function of RT in the three topological regions are reported. It is found that the yield of high transverse momentum particles relative to the RT-integrated measurement decreases with increasing RT in both the toward and the away regions, indicating that the softer UE dominates particle production as RT increases and validating that RT can be used to control the magnitude of the UE. Conversely, the spectral shapes in the transverse region harden significantly with increasing RT. This hardening follows a mass ordering, being more significant for heavier particles. Finally, it is observed that the pT-differential particle ratios (p + p )/(π+ + π−) and (K+ + K−)/(π+ + π−) in the low UE limit (RT → 0) approach expectations from Monte Carlo generators such as PYTHIA 8 with Monash 2013 tune and EPOS LHC, where the jet-fragmentation models have been tuned to reproduce e+e− results

    Enhanced Deuteron Coalescence Probability in Jets

    Get PDF
    : The transverse-momentum (p_{T}) spectra and coalescence parameters B_{2} of (anti)deuterons are measured in p-p collisions at sqrt[s]=13  TeV for the first time in and out of jets. In this measurement, the direction of the leading particle with the highest p_{T} in the event (p_{T}^{lead}>5  GeV/c) is used as an approximation for the jet axis. The event is consequently divided into three azimuthal regions, and the jet signal is obtained as the difference between the toward region, that contains jet fragmentation products in addition to the underlying event (UE), and the transverse region, which is dominated by the UE. The coalescence parameter in the jet is found to be approximately a factor of 10 larger than that in the underlying event. This experimental observation is consistent with the coalescence picture and can be attributed to the smaller average phase-space distance between nucleons in the jet cone as compared with the underlying event. The results presented in this Letter are compared to predictions from a simple nucleon coalescence model, where the phase-space distributions of nucleons are generated using pythia8 with the Monash 2013 tuning, and to predictions from a deuteron production model based on ordinary nuclear reactions with parametrized energy-dependent cross sections tuned on data. The latter model is implemented in pythia8.3. Both models reproduce the observed large difference between in-jet and out-of-jet coalescence parameters, although the almost flat trend of the B_{2}^{Jet} is not reproduced by the models, which instead give a decreasing trend

    First measurement of prompt and non-prompt D⁎+ vector meson spin alignment in pp collisions at s=13 TeV

    Get PDF
    This letter reports the first measurement of spin alignment, with respect to the helicity axis, for D*+ vector mesons and their charge conjugates from charm-quark hadronisation (prompt) and from beauty-meson decays (non-prompt) in hadron collisions. The measurements were performed at midrapidity (|y| D0 (-> K- pi+) pi+ decay products, in the D*+ rest frame, with respect to the D*+ momentum direction in the pp centre of mass frame. The rho_00 value for prompt D*+ mesons is consistent with 1/3, which implies no spin alignment. However, for non-prompt D*+ mesons an evidence of rho_00 larger than 1/3 is found. The measured value of the spin density element is in the interval, which is consistent with a Pythia 8 Monte Carlo simulation coupled with the EvtGen package, which implements the helicity conservation in the decay of D*+ meson from beauty mesons. In non-central heavy-ion collisions, the spin of the D*+ mesons may be globally aligned with the direction of the initial angular momentum and magnetic field. Based on the results for pp collisions reported in this letter it is shown that alignment of non-prompt D*+ mesons due to the helicity conservation coupled to the collective anisotropic expansion may mimic the signal of global spin alignment in heavy-ion collisions
    corecore