55 research outputs found

    Smart system for maintaining aquascape environment using internet of things based light and temperature controller

    Get PDF
    The purpose of this research is to create a smart system based on internet of things (IoT) application for a plant aquarium. This smart system helps users to maintain the environment's parameters of the plant aquarium. In this study, the parameters to be controlled by the system are light intensity and temperature. The hardware used to develop this system is the ESP32 as the microcontroller, BH1750FVI as the light sensor, high power led (HPL) light-emitting diodes (LED) lamp as the light source, DS18B20 as temperature sensor, the heater, and the 220 VAC fan that is used to raise and lower the temperature. In this study also developed an application that is used by the user to provide input to the system. The developed application is then installed on the user's smartphone and used to connect the user to the system via the internet. The ease of adding and removing devices used on the system is a capability that is also being developed in this smart system. The developed system can produce light intensity with accuracy rate of 96% and always manage to keep the temperature within the predetermined range

    Composition and physicochemical properties of oat starches

    Get PDF
    Starches from two new oat varieties namely AC Stewart (Avena sativa L.) and NO 753-2 (Avena nuda L.) were isolated and some of their characteristics determined. The total amount of starch lipids (TSL) extracted by acid hydrolysis was 1.60% (w/w) in both starches. The free lipid content (extracted by chloroform-methanol (CM) 2:1 v/v at 25°C) was 0.36 and 0.30% (w/w) in NO 753-2 and AC Stewart starches, respectively. The bound lipid content (extracted by hot n-propanol-water 3:1 v/v from the residue left after CM extraction) was 1.27 and 1.37% (w/w) in NO 753-2 and AC Stewart starches, respectively. The total amylose contents were nearly the same (~23%, w/w) in both starches, of which 14.1 (NO 753-2) and 15.3% (AC Stewart) were complexed by native lipids. The starches differed widely in their degree of swelling, gelatinization transition temperatures and enthalpy, susceptibility towards acid and enzyme hydrolysis, gel strength, paste viscosity, thermal stability and retrogradation characteristics. The results suggest that the extent of interaction of starch chains within the amorphous and crystalline regions of the granule was stronger in NO 753-2 than in AC Stewart

    Enzyme-assisted synthesis of structured lipids containing long-chain omega-3 and omega-6 polyunsaturated fatty acids

    Get PDF
    Lipase-catalyzed acidolysis of borage (Borago officinalis L.) and evening primrose (Oenothera biennis L.) oils with long-chain ω3-polyunsaturated fatty acids (LCω3-PUFA), namely docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA), in organic solvents was studied. Six microbial lipases from Candida antarctica, Mucor miehei, Pseudomonas sp., Aspergillus niger, Candida rugosa and Thermomyces lanuginosus were initially used as biocatalysts for the acidolysis reaction. Among the enzymes tested, an immobilized lipase, Novozym-435 from Candida antarctica showed the highest degree of DHA incorporation (25.8-28.7%, after 24 h) in borage oil (BO) and evening primrose oil (EPO). However, the maximum incorporation of EPA (28.7-30.7%, after 24 h) in both oils was achieved with lipase PS-30 from Pseudomonas sp. In another study, incorporation of EPA+DHA into BO and EPO was carried out by first screening of lipases listed above; lipase PS-30 from Pseudomonas sp. was the most efficient enzyme examined (31.7-32.7% EPA+DHA incorporation, after 24 h). -- Effects of variation of reaction parameters, namely enzyme load, temperature, time course, mole ratio of substrates and type of organic solvents were monitored for the most effective enzymes, those from Candida antarctica and Pseudomonas sp., as the biocatalysts of choice. Incorporation of DHA and/or EPA increased significantly (p ≤ 0.05) with increasing the amount of enzyme. As the incubation time progressed, incorporation of these fatty acids was also increased, similar to that observed when the temperature and mole ratio of substrates increased. The highest DHA (37.4-39.7%) or EPA (37.4-39.9%) incorporation occurred at a mole ratio of 1:3 (oil/ DHA or EPA). However, maximum incorporation of EPA+DHA (54-57.5%) occurred at a mole ratio of 1:2:2 (oil/EPA/DHA) and then remained constant between mole ratios of 1:2:2 and 1:3:3. Among solvents examined, n-hexane served best in giving rise to 25.5-27.4% DHA, 25.2-26.8% EPA and 27.8-33.3% EPA+DHA incorporation in the oils. However, solvent-free reactions also gave satisfactory incorporation of 18.1-20.5% DHA, 18.6-20.4% EPA and 23.4-28.8% EPA+DHA in the oils tested. -- Response surface methodology (RSM) was used to obtain a maximum yield of DHA, EPA and EPA+DHA incorporation while using the minimum amount of enzyme possible. Process parameters studied were the amount of enzyme (100-350 units), reaction temperature (20-60°C) and reaction time (6-30 h). All experiments were carried out according to a face-centred cube design. Under optimum conditions (162-165 units of Candida antarctica enzyme: 43-50°C; 25-27 h), incorporation of DHA was 35.6% in BO and 33.5% in EPO. Optimization of acidolysis of oils with EPA, gave rise to a maximum of 35.4 and 33.9% EPA incorporation in BO and EPO, respectively, at 299-309 units of Pseudomonas sp. enzyme, reaction temperature of 40-44°C and reaction time of 25-27 h. Similarly, maximum incorporation of EPA+DHA in BO (35.5%) and EPO (33.6%) was attained at 278-299 units of Pseudomonas sp enzyme, at 42-43°C after 24-26 h. -- In another study, enzymatically modified oils, produced under optimum reaction conditions, were classified using thin-layer chromatography-flame ionization detection (TLC-FID). The results showed that the content of TAG (85.1-95.1%) was much higher than that of the DAG (2.4-11.2%) and MAG (0.3-9.7%) in the structured lipids so produced. Because free fatty acids were removed by NaOH after the acidolysis reaction, they were not detected by TLC-FID. The products were also separated by TLC and the fatty acid compositions of their corresponding isolated bands analyzed by gas chromatography. Results showed that DHA and/or EPA were mainly located in TAG fractions of enzymatically modified oils (33.2-35.4% DHA; 32.5-33.2% EPA and 33.6-35.5% EPA+DHA in DHA, EPA and EPA+DHA-enriched oils, respectively). The TAG fractions also contained appreciable proportions of γ-linolenic acid (GLA) (11.0-17.1 and 7.5-7.6% in DHA, EPA and EPA+DHA-enriched BO and EPO, respectively). -- Stereospecific analysis was carried out to establish positional distribution of fatty acids in the TAG of DHA, EPA and EPA+DHA-enriched oils. In DHA-enriched BO, DHA was randomly distributed over the three positions of TAG while GLA was mainly esterified at the sn-2 and sn-3 positions. In DHA-enriched EPO, however, DHA and GLA were concentrated in the sn-2 position. In EPA-enriched BO, EPA was randomly distributed over the three positions of TAG, similar to that observed for DHA. In EPA-enriched EPO, however, this fatty acid was mainly located at the primary positions (sn-1 and sn-3) of TAG. In both oils, GLA was preferentially esterified at the sn-2 position. In EPA+DHA-enriched BO, EPA and DHA were mainly esterified at the sn-1 and sn-3 positions of TAG while GLA was mainly located at the sn-2 position. In EPA+DHA-enriched EPO, GLA was mainly located at the sn-2 and sn-3 positions; EPA was preferentially esterified at the sn-1 and sn-3 positions, while DHA was found mainly at the sn-3 position. -- The oxidative stability of enzymatically modified oils as well as their unmodified counterparts was evaluated under Schaal oven conditions at 60°C over a 96 h storage period. Conjugated dienes (CD), 2-thiobarbituric acid reactive substances (TBARS) and headspace volatiles were determined. In addition, proton nuclear magnetic resonance (¹H NMR) spectroscopy was used to monitor relative changes in the proton absorption pattern of the fatty acids of oils during storage. Among the oils examined, enzymatically modified products gave rise to higher CD and TBARS as compared to those of their unmodified counterparts. The main volatile compounds identified in enzymatically modified oils were acetaldehyde, propanal, butanal, pentanal, hexanal, heptanal, octanal and nonanal. However, the main volatile compound found in unmodified oils was hexanal. The contents of propanal and hexanal produced by enzymatically modified oils were significantly higher (p ≤ 0.05) than those produced by their unmodified counterparts. These results suggested that the modified oils were more prone to oxidation than their unmodified counterparts. -- The double bond index (DBI) and methylene bridge index (MBI), represent the number of double bonds and bis allylic methylene bridge positions in PUFA, respectively, were calculated. DBI and MBI of enzymatically modified oils were significantly (p ≤ 0.05) higher than those of their unmodified counterparts. During oxidation of oils, DBI and MBI were decreased. Regression analysis was carried out to correlate various parameters of oxidation (CD, TBARS, hexanal and propanal contents) with DBI and MBI of oils; a negative correlation (r = 0.574-0.975; p ≤ 0.1-0.05) existed between these variables. -- Relative changes of aliphatic to olefinic (Rao) and aliphatic to diallylmethylene (Rad) protons ratios, during oil oxidation, were determined by ¹H NMR spectroscopy. An increase in Rao and Rad values was obtained over the entire storage period. A highly significant correlation (r = 0.930-0.992; p ≤ 0.005) existed between the CD values and changes in Rao and Rad during oxidation of all oils. The correlation coefficient between TBARS and changes in Rao and Rad values was in the range of 0.779 -0.983 (p ≤ 0.05). A high correlation (r = 0.948-0.996; p ≤ 0.005) was found between hexanal content and Rao and Rad of oils. Propanal content was also highly correlated (r = 0.950-0.990; p ≤ 0.005) with Rao and Rad. This suggests that ¹H NMR could be used to simultaneously estimate both primary and secondary oxidation changes in native and enzymatically modified oils

    Enzyme-Assisted Acidolysis of Borage ( Borago

    No full text

    Challenging epilepsy with antiepileptic pharmacotherapy in a tertiary teaching hospital in Sri Lanka

    No full text
    The goal of antiepileptic drug (AED) therapy is to achieve a seizure-free state and eliminate the medical and psychosocial risks of recurrent seizures. Burden of epilepsy on the economy of a country may be largely due to the expenditure on AEDs. The adverse effects may influence the compliance to AEDs and effective control of epilepsy. We determined the pattern of AED use, the degree of epileptic control achieved and the adverse effects experienced by the epileptics in a Tertiary Teaching Hospital in Sri Lanka. Carbamazepine was found to be the most frequently used AED. Monotherapy was used on 70.8% of subjects. 86.27% of the study sample had achieved effective control of epilepsy with a 50% or more reduction in seizure frequency. Of them 72.64% were on monotherapy and they were either on carbamazepine, sodium valproate, phenytoin sodium or phenobarbitone. None of the new AEDs were prescribed to these patients. 50.9% on monotherapy and 51.5% on polytherapy reported adverse effects. Somnolence followed by headache was found to be the most frequently reported adverse effects by those on monotherapy and polytherapy both. This study shows that most epileptics can be effectively managed with the conventional AEDs with clinical monitoring
    • …
    corecore