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ABSTRACT 

Lipase-catalyzed acidolysis of borage 1 Bvrago ojficinalis L.l ;,tnd e\ening 

pnmrose 1 Oenorhera hiennis L.l oils with long-chain w3-polyunsatur;.tted Lmy acids 

1 LCro3-PCFAl. namely docosahe:~aenoic actd ( DHAI and/or eicosapentaenoic acid 

1 EPA l. in organic solvents was studied. Six microbial lipases from Candida amarcrica . 

• 1ducor miehei. Pseudomonas sp .. Aspergillus niger. Candida rus:osa and Thanwm\ces 

lanuginvsus were initially used as biocatalysts for the acidolysis reaction . Among the 

enzymes tested. an immobilized lipase. ~ovozym--BS from Candida untarcrica showed 

the highest degree of DHA incorporation ( 25 .8-28. 7<1-. after 2~ h l in borage oil 180 l and 

eventng primrose oil 1 EPOl. However. the maximum incorporation of EPA 1 28.7-30.7"ic. 

after 2~ h 1 in both oils was achieved with lipase PS-30 from Pseudommz,zs sp. ln another 

study. incorporation of EPA+DHA into 80 and EPO was carried out by first screening of 

lipases listed above: lipase PS-30 from Pseudomonas sp. was the most efficient enzyme 

examined (3l.7-32.7q. EPA+DHA incorporation. after .24 h). 

Effects of variation of reaction parameters. namely enzyme load. temperature. 

time course. mole ratio of substrates and type of organic solvents were monitored for the 

most effective enzymes. those from Candida antarctica and Pseudomonas .'ip .. as the 

biocatalysts of choice. Incorporation of DHA and/or EPA increased significantly 1 p ~ 

0.05) with increasing the amount of enzyme. As the incubation time progressed. 

incorporation of these fatty acids was aJso increased. similar to that observed when the 
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temperature and mole ratio of substrates increased. The highest DHA ( 37.4-.39.7C.C 1 or 

EP.-\ t37 .-l-39.9C:cl incorporation occurred at a mole ratio of 1:3 (oil/ DHA or EPA1. 

However. maximum incorporation of EPA+DHA ( 5-l-57 .5'7C 1 occurred at a mole ratio of 

I :2:2 !oil/EPAIDHAl and then remained constant between mole ratios of I :2:2 and I :3:.3 . 

Among solvents examined. n-hexane served best in giving rise to 25.5-27AS: DHA. 25 .2-

26.SC:C EPA and 27.8-33 .3C:C EPA+DHA incorporation in the oils. However. solvent-free 

reactions also gave satisfactory incorporation of 18. 1-20.5% DHA. l8 .6-20.4'7C EPA and 

23.4-28.SGC EPA+DHA in the oils tested. 

Response surface methodology ! RSM) was used to obtain a maximum yield of 

DHA. EPA and EPA+DHA incorporation while using the minimum amount of enzyme 

possible. Process parameters studied were the amount of enzyme ( 100-350 units 1. 

reaction temperature 1 20-60->C) and reaction time 16-30 h) . All experiments were (:arried 

out according to a face-centred cube design. Under optimum conditions 1 162-165 units of 

Candida anrarcrica enzyme: 43-50°C: 25-27 h). incorporation of DHA -was 35.6% in BO 

and 33.5'1: in EPO. Optimization of acidolysis of oils with EPA. gave rise to a maximum 

of 35.4 and 33.9% EPA incorporation in 80 and EPO. respectively. at 299-309 units of 

Pseudomonas sp. enzyme. reaction temperature of 40-44 °C and reaction time of 25-27 h. 

Similarly. maximum incorporation of EPA+DHA in BO (35.5%) and EPO (33.6% 1 was 

attained at 278-299 units of Pseudomonas sp enzyme. at 42-43 °C after 24-26 h. 
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In another "tudy. enzymatically modified oils. produced under optimum rea'-=t ion 

~onditions. were dassitied using thin-layer chromatography-name ionization Jetection 

tTLC-FIDL The results showed that the content of TAG (85. 1-95.!C7c l was much higher 

than that of the DAG 1 2A-l!.2q.. 1 and ~AG !0.3-9.7%) in the structured lipids so 

produced. Because free fatty acids were removed by NaOH after the acidolys•~ rt:act ton . 

they were not detected by TLC-FID. The products were also separated by TLC and the 

fatty acid compositions of their corresponding isolated bands analyzed by gas 

chromatography. Results showed that DHA and/or EPA were mainly located in TAG 

fractions of enzymatically modi tied otis 1 33.2-35A% DHA: 32.5-33.2C7c EP:\ and .33.6-

35.59C EPA+DHA in DHA. EPA and EPA+DHA-enriched oils. respectively) . The TAG 

fractions also contained appreciable proportions of y-linolenic acid 1 GLA 1 1 I 1.0-l 7. I and 

7.5-7.6% in DHA. EPA and EPA+DHA-enriched BO and EPO. respectivl!lyl. 

Stereospecific analysis was carried out to establish positional distribution of fatty 

acids in the TAG of DHA. EPA and EPA+DHA-enriched oils. In DHA-enriched BO. 

DHA was randomly distributed over the three positions of TAG while GLA was mainly 

esterified at the sn-2 and sn-3 positions. In DHA-enriched EPO. however. DHA and GLA 

were concentrated in the sn-2 position. In EPA-enriched BO. EPA was randomly 

distributed over the three positions ofT AG. similar to that observed for DHA. In EPA

enriched EPO. however, this fatty acid was mainly located at the primary positions !sn-1 

and sn-3) ofT AG. In both oils. GLA was preferentially esterified at the sn-2 position. In 

IV 



EPA+DHA-enriched BO. EPA and DHA were mainly esterified at th!! sn-l and .m-3 

positions of TAG while GLA \vas mainly located at the sn-2 position. In EP.-\+DH.-\

enriched EPO. GLA was mainly located at the sn-2 and .m-3 positions: EPA \\a:-. 

preferentially esterified at the sn-1 and sn-3 positions. while DHA was found m;.unly at 

the sn-3 position. 

The oxidative stability of enzymatically modified oils as \veil as their unmodified 

counterparts was evaluated under Schaal oven conditions at 60"C over a 96 h ~torage 

period. Conjugated dienes lCD). 2-thiobarbituric acid reactive substances 1TBARS1 and 

headspace volatiles were determined. In addition. pro[On nuclear magnetiC resonance 1 1 H 

~~R I spectroscopy was used to monitor relative changes in the proton ahsorption pactem 

of the fatty acids of oils during storage. Among the oils examined. l!nzymatically 

modified products gave rise to higher CD and TBARS as compared to those! of the1r 

unmodified counterparts. The main volatile compounds identified in enzymatically 

modified oils were acetaldehyde. propanal. butanal. pentanal. hexanal. heptanal. octanal 

and nonanal. However. the main volatile compound found in unmodified oils \vas 

hexanal. The contents of propanal and hexanal produced by enzymatically modified oils 

were significantly higher (p ~ 0.05) than those produced by their unmodified 

counterparts. These results suggested that the modified oils were more prone to o.~idation 

than their unmodified counterparts. 
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The double bond index 1 DBil and methylene bridge index 1 \-tBIL represent the 

number of double bonds and bis allylic methylene bridge positions in PL'F:\. respectively. 

\vere ~.:akul:.lted . DBl and \-'tBI of enzymatically modified oils \Vere significantl~ 1 p ~ 

0.05) higher than those of their unmodified counterpans. During oxidation of viis. OBI 

and MBI were decreased. Regression analysis was ~arried out to correlate vanvus 

parameters of vxidation 1CD. TSARS. hexanal and propanal ~ontent:~ 1 \V ith OBI and \18[ 

uf viis: a negative correlation 1 r = 0.574-0.975: p ~ 0 .1-0.05) existed between these 

variables . 

Relative changes of aliphatic to olefinic ( Raol and aliphatic to Jiallylmethylene 

1 RadJ protons ratios. during oil oxidation. were determined by 1H NMR spectroscopy. An 

increase in Rao and Rad values was obtained over the entire storage period. A highly 

significant correlation < r = 0.930-0.992 : p 5 0.005) existed between the CD values and 

changes in Rao and R~d during oxidation of all oils. The correlation coefficient between 

TSARS and changes in Rao and Rad values was in the range of 0 . 779 -0.983 1 p 5 0 .051 . .-\ 

high correlation ( r = 0 .948-0.996: p 5 0.005) was found between hexanal content and RJo 

and Rau of oils. Propanal content was also highly correlated < r = 0.950-0.990: p 5 0 .005 1 

with Rao and Rad· This suggests that 1H NMR could be used to simultaneously estimate 

both primary and secondary oxidation changes in native and enzymatically modified oils. 
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CHAPTER l 

INTRODVCTION 

Structured lipids t Sll. sometimes referred to as .. nutraceutical lipids. functional 

lipids. or designer lipids .. <Akoh. 1996a: 1998l. may be produced from short-. medium- or 

long-chain triacylglycerols (T:\G l. any animal or vegetable oils. using lipase-assisted 

reactions with specific fatty acids or their alkyl esters . for potential use in food and 

nutritional preparations t Lee and Akoh. 1998a). There is a need for enzymatic synthesis 

of these specialty lipids which are currently receiving research and industry attention. 

~lodification of lipids. using lipases. provides a useful means to improve the! 

characteristics ofT AG. Through enzyme-catalyzed reactions. it is possible to incorporate 

des1red fatty acids or their alkyl esters onto a specific position of the TAG. However. 

(hemically catalyzed reactions do not possess this regiospecificity due to the random 

nature of the reaction ( Akoh. 1995). Thus. lipase-catalyzed reactions may provide regia

or stereospecific SL for nutritional. medical and food applications lAkoh. 1995: 19981. 

Borage (Bora go officinalis L.) and evening primrose ( Oenothera biennis L.) have 

been the subject of increasing agricultural interest because of the potential market for 

their seed oils. which contain y-linolenic acid (GLA: 18:3ro6). Borage seeds contain 28-

38% oil. of which 20-25% is GLA (Beaubaire and Simon. 1987). whereas seeds of 

evening primrose contain 17-25% oil (Wolf et al.. 1983) with 8-IO'k GLA !Fieldsend. 

1996). GLA is one of the essential w6 polyunsaturated fatty acids (PUFA) and must be 
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provided in food because it cannot be easily synthesized within the body 1 Horrobtn. 

1990). In recent years. much research has been directed toward the production of GL.-\ 

1 \lukherjee and Kiewitt. 1991: Rahmatullah eta/ .. 1994a.b: Shimada t't a/.. 1998: Huang 

t!t a/ .. 1999! for applications such as curing or treating of certain skin-related disea:-.es as 

well as diabetes. hypertension. cancer. premenstrual syndrome. intlammatory anJ 

cardiovascular disorders ( Horrobin. 1990: 1992a: 1994: Gurr. 1997'1. In humans and in 

other mammals. GLA is the first metabolite formed during the bioconversion of linokic 

acid 1 LA: 18:2w6 l to prostaglandins by the desaturation at the C-6 position \"iLl rhe 

enzyme ~6-desaturase 1 Horrobin. 1990). Individuals who lack .:l6-desaturase suffer from 

a number of diseases due to an imbalance in GLA production and formation of successive 

metabolites that lead to prostaglandins. The physical and chemical properties as well as 

nutritional and medicinal importance of GLA have recently been reviewed l Gunstone. 

1992: Horrobin. 1992bl 

On the other hand. the <U3 fatty acids. including docosahexaenoic acid 1 DHAl and 

eicosapentaenoic acid (EPA). also have several health benefits related to cardiovascular 

disease 1 Schmidt and Dyerberg. 1999). hypertension (Deferne and Leeds. 19921. 

autoimmune and renal disorders (Calder. 1999: Bechoua er al .. 1999). intlammation 

1 Boissonneault and Hayek. 1992). allergies (nlingworth and Ullmann. 1990). diabetes 

t Bhathena. 1992) and cancer (Carroll. 1990: Haumann. 1997a). Apart from having a 

favourable effect on several disorders. DHA is also considered important for proper 
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function of the nervous system and \'isual acuity I Crawford et a/ .. 1999: Rotstein t'l td .. 

1999: Kim and Edsall. 1999 l in humans and serves as one of the most abundant 

~omponents of ~tructural lipids of the brain 1 Salem eta/ .. 1986: Carlson. 1995: Hamazaki 

eta/ .. 19991. 

Several sources of information suggest that humans originally wnsumed a Jiet 

with a ratio of UJ6 to w3 fatty acids of about I: I whereas today this ratio is ranged from 

I 0: l to 20: I in the affluent western societies 1 Simopoulos. 1999 l. Therefore. \vestem 

diets are deficient in their (1)3 fatty acids content as compared with the diet on which 

humans evolved. 

The beneficial effects of both w6 1 GLA l and (1)3 (EPA and DHA 1 fatty acids are 

attributed to eicosanoid synthesis. Incorporation of EPA and DHA from marine sources 

mto GLA-rich borage or evening primrose oil may provide unique specialty oils for 

specific nutritional and clinical applications. This would be possible via lipase-catalyzed 

acidolysis reaction. Enzyme-mediated reactions have been successfully used for 

restructuring lipids by interesterification of c.o3 fatty acids with either plant or marine oils 

1Lee and Akoh. 1998a.b). Use of enzymes to produce SL has an advantage over the 

traditional methods (chemical hydrolysis. chemical interesterification. physical blending. 

etc .. ) since such methods involve high temperature processes which may partially destroy 

the natural all-cis c.o3 PUFA via oxidation and cis-trans isomerization . Therefore. the 



mild conditions used in enzymatic reactions provide a promising alternative that could 

also save energy and increase product selectivity. 

Despite their health benefits. oils containing highly unsaturated fatty acids 

t HCF:\ 1 are susceptible to rapid oxidative deterioration and thus experience stability 

problems. It is important to prevent oxidation of edible oils and of foods that contam 

them in order to maintain their quality and safety. Oxidation of fats and oils may be 

initiated by light. heat and presence of metal ions. Oxidation of oils occurs ~·ia a free

radical cham reaction mechanism involving initiation. propagation and termination steps 

t Shahidi and Wana.sundara. 1996: 1997). Oxidative deterioration of edible oils involves 

autoxidation accompanied by various reactions having oxidative and nonoxidative 

characteristics (Gray. 1978 ). Hydroperoxides are the primary products of autoxidation 

which in themselves are tasteless and odourless. Their decomposition. however. leads to 

the formation of a variety of volatile compounds which result in the development of 

undesirable tlavours and off-odours tFrankel. 1987). Oxidized fats and oils have also 

been reported to cause biological problems. such as diarrhea. growth depression and 

tissue damage in living organisms (Chow, 1992). 

ln order to determine the oxidative state and quality of edible oils. a number of 

stability tests are routinely employed. Methods reported in the literature include chemical 

and instrumental techniques (Rossell, 1991: Shahidi and Wanasundara. 1998b). These 

methods detect either the primary or secondary products of lipid oxidation and have been 
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found to correlate well with descriptive sensory analyses (Rossell. 199-h Howe\t!r. Lt ts 

desirable to develop methods that could simultaneously determine both the primary ;.tnd 

secondary products of lipid oxidation . ~uclear magnetic resonance ( ~MR 1 .;pectroscopy 

is considered to have the potential for quantification of the overall extent of lipid 

oxidation 1Shahidi et at .. 1994: Shahidi and Wanasundara. 1997). This method measures 

the relative changes that occur in the ~MR absorption pattern of lipid fatty acids dunng 

oxidation. 

Of the :;everal procedures considered for concentration of PCFA from otis. urea 

complexation is one of the most efficient and simplest techniques which may lend itself 

for preparation of DHA concentrates from algal oils. Ba.sed on literature evidence for 

enzymatic production of SL from plant oils with PUFA. it is hypothesized that SL 

containing GLA. EPA and DHA in the same molecule may be successfully produced 

from borage t 80) or evening primrose oils (EPO> with OJ3 PUFA 1 EPA and DHA 1. lt is 

generally accepted that the positional distribution of fatty acids within the TAG 1 sn-l. sn-

2 and sn-3) might affect the metabolic fate of fatty acids. Hence. it is thought that 

knowledge of the stereospecific structure of PUFA-enriched BO and EPO is important 

since it influences their absorption and assimilation in the body. Since oxidative stability 

of oils is dictated by their degree of unsaturation. it was thought that enzyme-mediated 

PUFA-enriched BO and EPO might also act in a similar fashion. Furthermore. little is 

known about the oxidative stability of BO and EPO. and virtually nothing is known about 
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the oxidative -;tability of these oils \vhen PCFA are incorporated into them \'ia enzyme

catalyzed acidolysis reactions. To examine these hypotheses and to fill an important gap 

in the -.cientific literature regarding the ~ynthesis. characteristics and stabil ity l)f PL"FA

enriched BO and EPO. several approaches were considered. The objectives of this ... tud~ 

were: (I) to concentrate DHA from algal oil using the urea complexation technique. 12, to 

synthesize DHA. EPA and EPA+DHA-enriched oils from 80 and EPO with w3 PL"F.-\ 

1 EPA and DHA ). 13) to optimize the reaction conditions for ~ynthesis of DHA. EPA and 

EPA+DHA-enriched oils. t4) to determine chemical characteristics of DHA. EPA and 

EPA+DHA-enriched oils and unmodified oils. ( 5) to determine the positional distribution 

of fatty acids in the DHA. EPA and EPA+DHA-enriched oils. and (6) to assess oxidative 

stability of DHA. EPA and EPA+DHA-enriched otis as well as their unmodifit!d 

counterparts. 



CHAPTER 2 

LITER-\ TCRE REVIE\V 

2.1 Structured lipids and their significance 

Structured lipids 1 SLJ may be defined as triacylglycerols 1 TAG 1 restructured or 

modified to change the fatty acid composition and/or their positional distribution in 

glycerol molecules by a chemical or enzymatic process 1 Lee and .-\koh. 1998a.b ). These 

specialty lipids have been developed to fully optimize the benefit of various fatty acid 

moieties. SL have been reported to have beneficial efft!cts on a range of metabolic 

parameters including immune function. nitrogen balance. and improved lipid clearance 

from the bloodstream 1 Quinlan and \1oore. 19931. SL are also synthesized to 1mprove or 

change the physical and/or chemical properties of T.-\G such as melting pomt. solid fat 

content. iodine and saponification values. 

Structured lipids are often referred to as a new generation of lipid that can be 

considered as .. nutraceut1cal .. t Kennedy. 1991 1. :"-iutraceutical is a term used to describe 

foods that provide health benefits beyond those ascribed to their nutritional effects (Scott 

and Lee. 1996 ). These products may be referred to as functional foods or functional lipids 

if they are incorporated into products that have the usual appearance of food . but to which 

they may be added and provide specific health benefits (Scott and Lee. 1996 ). The 

nomenclature is still confusing and needs to be worked out by the scientists in this field. 



Thus. SL can be designed for use as medical or functional foods as well as nutraceuticals 

1 Akoh. !996aJ. depending on their form of application. 

On~ way of preparing SL may be \'ia the hydrolysis of fatty acy I groups from a 

mixture of TAG followed by random reesterification onto the glycerol backbone 

1 Bahayan. 19871. Typically. a varit!ty of fatty acids are used in this process. including 

different dasses of saturated. monounsaturated and polyunsaturated fatty acids ( PCFA l. 

dept!nding on the desired metabolic effect. Thus. a mixture of fatty acids is incorporated 

onto the same glycerol molecule. These manufactured lipids are structurally and 

metabolically quite different from the more simple. random physical mixtures of 

mediunH.:hatn triacylglycerols 1 ~CT) and long-chain triacylglycerols ( LCT) 1 Figure 2. 1). 

2.1.1 s~·nthesis of structured lipids 

Chemical or enzyme-catalyzed reactions. namely esterification. interesterification. 

alcoholysis and acidolysis may be used to produce SL 1 Figure 2.2). However. the method 

of choice depends on the type of substrates available (Lee and Akoh. l998a) and that of 

the end products required. The following sections will focus on various lipase-catalyzed 

reactions. 



Figure 2.1 
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The difference between a simple physical mixture of medium-chain 
triacylglycerol (MCT) and long-chain triacylglycerol (LCf) and a 
structured lipid <SL> containing randomized medium- and long-chain fatty 
acids in the same glycerol molecule 
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Figure 2.2 
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Schematic diagrams of lipase-catalyzed lipid modification strategies for 
the production of structured lipids (Sl) 
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2.1.1.1 Esterification 

Estenfication is the reverse of the hydrolysis process. It is carried out by reacting 

fatty acids \vith glycerol. The reaction is reversible and proceeds to completion only if 

\Vater is removed from the medium. The equilibrium between the forward reaction 

1 hydrolysis 1 and the reverse reaction 1 esterification) is controlled by water content of the 

reaction mixture 1.-\koh. 1996al. In the presence of excess water. hydrolysis 

predominates. whereas under water-limiting conditions esterification is favoured 

1 :'vlarangoni and Rousseau. 1995: Willis and :\-larangoni. 1999). The accumulatton of 

water during esterification is a concern because it may inhibit the activ1ty of lipase and 

possibly enhance the hydrolysis of the formed esters. The water. which is produced 

during this reaction. may be continuously removed and this is usually accomplished by 

carrying the reaction in the presence of molecular sieves 1 Ergan et al .. 1988). However. a 

-;mall amount of water is needed in the reaction to maintain the activity of the enzyme. 

When the esterification reactants are properly adjusted. monoacylglycerols 

1 ~1.-\G ). diacylglycerols l DAG) and possibly TAG may be produced \'ia esteritication 

with glycerol. The products of these reactions are always a mixture of :\-tAG and DAG 

and contain variable quantities of unreacted glycerol. These products have many 

applications. among which food. cosmetic and pharmaceutical emulsifiers and stabilizers 

are prominent examples 1 Arcos and Otero. 1996: Rosu et al .. 1999). 
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Several investigators have used selective esterification reactions to concentrate "(

linolenic acid l GLA 1 from borage. evening primrose and fungal oils. Schmin-Rozieres er 

a/. l 1999\ used selective esterification to enrich GLA 1 up to 68.-V~ 1 from borage oil with 

immobilized Candida ru~osa tipa..se :.tS the biocatalysr . GLA present in borage oil \Vas 

also concentrated 1 up to 70CC 1 in esterification reactions that were catalyzed by lipase 

from Georric:lwm c:andidum tFogtia and Sonnet. 19951. The ability of the lipa..se from 

rapeseed tBrassic:a napus\ to discriminate against GLA has been utilized for the 

enrichment of this fatty acid from the mi:<ture of fatty acids derived from those of evening 

primrose oil \·ia kinetic resolution during lipase-catalyzed esterification with n-butanol 

1 Hills er al .. 19891. Similarly. the observed sdectivity of the lipase from .Hucor mielzei 

against GLA has been used for concentrating this fatty acid from fatty acids of evening 

primrose oil l Hills t!t a/ .. 19901 and fungal oil l ~tukherjee and Kiewin. 199\t during 

lipase-catalyzed reactions . 

In another study. structured TAG containing two molecules of caprylic acid 1 8:0) 

and one molecule of erucic acid 1 2::! : I w9) were prepared by lipase-catalyzed esterification 

of caprylic acid and monoerucin: upon hydrogenation of the erucoyl moieties to behenoyl 

moieties, the resulting TAG yielded products resembling caprenin. a commercially 

available low-calorie SL tMcNeill and Sonnet. 1995). Cerdan ec a/. ( 1998) carried out an 

in-depth study of the best reaction conditions for esterification of glycerol and w3 PL~FA 

concentrate using Candida antarctica lipase in organic solvents. Lnder optimum 



..:onditions. an enri-.:hed T.-\G \Vith a yield of 85l1- containing 27.-lC:C eicosapentaenoi-.: acid 

(EPA: 20:5w31 and ~5.1 C:C docosahexaenoic acid 1 DH.-\: 22:6w3 l was obtained. 

Wong t.>f a!. t 2000) described enzymatic synthesis of medium-chain acylgl~cerols 

from -:apric acid tCA.: 10:01 and glycerol using Candida rugo.w lipase. The amount L)f 

C.-\ con\·erted to acylglycerols was 33.2'"'1: which included 15C:C dicaprin and 17.3C,. 

tricaprin. Osada and -.:a-workers 1 1992 l have employed lipases from Clzmmohaccuium 

t·iscosum and Candida cv/indrw:ea for direct esterification of glycerol with individual 

free fatty acids 1 FF.-\l including EPA and DHA. The Chromobacterium t·iscosum lipase 

was supenor to that of Candida cylindracetl lipase affording 89-95""{- incorporation . .-\koh 

t.>C a/. ( 1992 l described the synthesis of MAG in organic solvents b~ lipase G from 

Pt!ninllium ~p. as the biocatalyst. This enzyme successfully catalyzed esterification of 

glycerol with oleic acid or EPA m hexane. Esterification at ~OllC for 2~ h resulted in 86.3 

and 6~ . .3 molcc incorporation of oleic acid and EPA. respectively . Esterification of 

glycerol with w3 PCFA. obtained from seal blubber oil. was achieved by He and Shahidi 

1 1997al using Chromobacrerium viscosum lipase. The degree of synthesis reached was up 

to 9~CC. 

2.1.1.2 Transesterification 

Transesterification is one of the maJOr reactions used by the industry for 

modification of natural fats and oils. ln its simplest fonn. transesterification corresponds 
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to an e:'(change of acyl groups between two T.--\G. resulting in the formatton of ne\v T.--\G 

that ha\e chemical and physical properties deemed superior to those of the starting T.--\G 

\Willis and \larangoni. 19981. 

Lipa..se-catalyzed transesterification has been applied particular! y to the production 

of cocoa-butter-type TAG and these processes exploH the .m-1.3-specificity which is 

..:ommon among microbial lipases t :'vlacrae and Hammond. 1985: Chong er Lli .. \9921. 

The types of TAG products obtainable:! by these reactions depend on the specificity of the 

lipase used. 

Jang et al. 119981 synthesized a low-calorie SL by transesterific~ttion of triacetin 

v.:ith steark acid in a solvent-free system using lipase from Candid<.l antarctica 

1 ~ovozym -051 as the biocatalyst. These researchers were able to obtain the highest yield 

1 appro:<imately 70°c t of SL at a mole ratio of I: I A. Foglia and Villeneuve 1 19971 also 

described the synthesis of low-calorie TAG analogs based on a Carica papaya latex 

tCPL\ lipase-catalyzed transesterification reaction. In a solvent-free system. an equimolar 

mixture of tributyrin and hydrogenated soybean oil wa..; reacted in the presence of 10'7c 

1 w/w l CPL and SL containing short- and long-chain fatty acids were obtained. Mangos er 

a/. 1 1999) also reported the CPL-catalyzed synthesis of low-calorie SL by 

transesterification of hydrogenated soybean oil with triacetin. 

Structured TAG of the monoacylglycerol diacetate and diacylglycerol 

monoacetate types are prepared using sn-1.3-specific lipases by transesterification of 
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plant oils with triacetin t Kuo and Parkin. 19951 or an alkyl acetate 1 :'vlukherjee and 

Kiewin. 11.N61. 

SL resembling T.-\G of human milk have been produced by transesterification of 

tripalmitin. derived from plant oil. with okic acid or PUFA. obtained from plant oils. 

using .m-1 .3--.pecific lipases as biocatalysts 1 Quinlan and :'vloore. 19931. Such TAG 1.vere 

found to dosely mimic the fatty acid distribution of human milk and mav be used in 

infant food formulations . 

ln the literature. the term 'transesterification · is often used to describe reactions 

that inVL)Ive the e.x.change of acyl residues between an ester and an acid tacidolysis l. an 

ester and an alcohol 1 akoholysis I. or an ester wtth another ester 1 inreresterification ). The 

following se,tions will describe each of these processes. 

2.1.1.3 lnteresterification 

Inreresterification is a process which is used in fats and oils to modify the physical 

and functional propenies of TAG mixtures I Sreenivasan. 1978). Interesterification alone 

and in combination with other processes extends the utility of edible oils. and such 

modified oils are extensively employed in a wide variety of foods . There are two types of 

interesterification reactions presently in use- chemical and enzymatic. Enzymatic 

modifications rely on the use of random or regiospecific (sn-1 .3- or sn-2 specific) and 

fatty acid-specific lipases as catalysts. 
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Lipast!-assistt!d intt!restt!rificltion offers possibilities for transformation of lipids 

beyond those! possible using chemical intert!steri fication 1 \<lac rae. 1983\. Enzymatic 

interesterification has many advantages such as mild reaction conditions. the possibility 

of lipase ..;pectficity and high catalytic dficiency. 

lrimescu er a/ . 1 2000l used an interesterificauon reaction for synthesis of 1.3-

dicapryloyl-2-eicosapentaenoylglycerol 1 CEC l from trieicosapentaenoylglycerol 1 EEEI 

and ethyl ~aprylate 1 EtC \ using Lipozyme L\-1 from Rhi:.omucor miehei. A.fter some of the 

reaction conditions \vere optimized. the maximum mole content of CEC in the TAG of 

the reaction mixture was 91 .0'7c . 

2.1.1--' Alcoholysis 

Alcoholysis is the esterification reaction between an alcohol and an ester 1 Figure 

2.2l . During alcoholysis. hydrolysis of TAG to produce DAG and MAG can occur 

1 \tlillqvist er al .. 1994l. although the presence of small amounts of alcohol can inhibit 

hydrolysis. 

Glycerolysis ts the exchange of acyl groups between glycerol and a TAG to 

produce MAG. DAG and TAG 1Willis and Marangoni. 1998). Enzymatic glycerolysis of 

fats and oils under atmospheric pressure and at nearly ambient temperatures has been 

investigated as an alternative method for the conventional chemical procedures used for 

industrial production of MAG and DAG 1 Noureddini and Harmeier. 1998 ). There are 
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~everal ways to produce ~lAG which are of great importance in the food industry as 

surface-acti\e agents and emulsifiers. ~1:\G may be produced by ester exchange between 

TAG and glycerol. or by reaction of FFA and glycerol. although only the former reaction 

is termed glycerolysis . 

Alcoholysis has been used in the production of methyl estas from esterification of 

T.--\G and methanol -...-ith yields of up to 53'7c 1 Briand er a/ .. 199·h Alcoholysis has also 

been used in the production of ~lAG enriched with w3 PL.FA tZuyi and Ward. 19931. 

Zuvi and \Vard t 1993 l used lipase-catalyzed alcoholysis to concentrate EPA and DHA 

from cod liver oil. The substratt:!S used in the reaction were cod liver oil and isopropanol. 

The lipase from Pseudvmvnas sp. was used a_s the biocatalyst. These authors \vere able to 

produce :\lAG containing ~oc;c w3 Pl;FA. ~illqvist et a/. t 199~) also prepared ~1.-\G 

from TAG by an alcoholysis reaction using an immobilized sn-1.3 -spec1fic Rhi::.vpus 

,lrrhi::.us lipase. 

2.1.1.5 Acidolysis 

Acidolysis. the transfer of an acyl group between an acid and an ester. is an 

effective means of incorporating novel fatty acids into TAG 1 Figure 2.2l. It may be used 

to incorporate FFA or ester forms of EPA and DHA into vegetable and fish oils to 

improve their nutritional properties. 
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Performing an acidolysis between GL\-rich FFA and borage oil acylglycerols. 

Huang era/. 119991 used an immobilized lipase from .Hucor miehei w increase the GLA 

content tn tht! acyl glycerol from 52. 1 to 75C7c . Acidolysis is also a common method for 

production of cocoa butter substitutes . Chong et a/. 1 1992) used acidolysis to incorporate 

stearic acid into palmolein to produce cocoa butter-like TAG. 

Jc:nnings and .-\kL)h t i 9991 used acidolysis to incorporate capnc acid t C.-\ 1 tnto the: 

fish oil T.-\G using immobilized lipase. IM 60. from Rhi::.omucvr miehei as a b1ocatalyst. 

The fish oil t produced by Pronova Biocare lnc .. Sandefjord. ~orway 1 originally contained 

-W.9C[ EPA Jnd 33.0C7c DHA. After a 24-h incubation in hexane. there was an average of 

43q.. incorporation of CA into fish oil. while EPA and DHA decreased to 27.8 and 23.5C7c. 

rc:spect1vely . Ac1dolysis reaction has also been used by Akoh and :Vtoussata t 19981 to 

incorporate C.-\ and EPA into borage oil using lipase from Candida antarctica and 

Rlri::.omucor miehei as biocatalysts. Higher incorporation of EPA t I 0 .2c.-c 1 and C.-\ 

t26.3S:I was obtained with Rlzi::.omucvr miehei lipase. compared to 8.8 and 15.5°c. 

respectively. with Candida antarctica lipase. 

The lipase-catalyzed acidolysis of a single-cell oil <produced by a marine 

microorganism. Schi::.oclzyrrium sp. 1 containing docosapentaenoic acid t DPA: 22:5(1)6 1 

and DHA with caprylic acid t 8:0) was investigated by Iwasaki et al. < I 999 l. Lipases from 

Rhi::.omucor miehei and Pseudomonas sp. were used as the biocatalysts. The targeted 

products were SL containing caprylic acid at the sn-1 and sn-3 positions and DHA or 
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DPA at the sn-2 position of glycerol. \Vhen Pseudommws sp. '''as used. more than 60cc 

of fatty acids in the single-cell oil ""ere e:<.changed wnh caprylic acid. With Rhi:omucor 

mielzei lipase. in~.:orporation of caprylic acid \vas only 23cc . The results of this study 

-;uggested that the difference in the degree of acidolysis by the t\vo enzymes was Jue to 

their different selectivity toward DPA and DHA a.s well a.s the Jifferen~.:e 1n the1r 

positional specificities. 

Lipase-catalyzed acidolysis was also utilized by Har~lldsson and Thorarensen 

( 1999) to synthesize phospholipids highly enriched with w3 PLFA using an immobilized 

Lipozyme from Rhi:omucor miehei. Funhermore. :\tliura era/. ( 1999) investigated a rapid 

method for preparation of SL with a purity over 95q. using an 1mmobilized Lipozyme-L\t 

from Rhbmwcor miehei. [n this study. acidolysis of triolein and lauric acid resulted in a 

TAG fraction enriched with 70°c lauric acid. 

2.2 Lipases in lipid modification 

Lipases occur widely in nature and are active at the oil/water interface in 

heterogeneous reaction systems and are used for modification of lipids. Lipases. or TAG 

acylhydrolases l E. C. 3.1.1.3 l. are enzymes that preferentially catalyze the hydrolysis and 

synthesis of esters and TAG. The physiological function of lipases is to hydrolyze lipids 

for conversion to accessible energy for the cells or organisms. Lipases are ubiquitous in 

nature. being present in the animal. microbial and plant kingdoms. The most well known 
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and well-studied lipases are human pancreatic lipase. ptg pancreatic lipase and st!veral 

microbial lipases . The common feature that distinguishes lipast!s from l:!sterases. \\ htch 

also catalyze the hydrolysis of e~tt!r bonds. is that lipases are activated by an interface 

t Vt!rger and de Haas. 1976~ . [n contrast to t!sterases. lipases show lov.: acuvity tO\vards 

monomeric substratc!s. but as soon as the substrate:! can form micdles or a separate phase. 

the activity of lipase! increases dramatically: this phenomenon is called interfacial 

acti \·arion 1 Verger. 198~ 1. 

The maJor advantage of lipase-catalyzed reactions over i.hose carried out \Vith 

chemical catalysts lies in the fact that a wide variety of products having different 

composition and propenies can be prepared. depending on substrate specificity or 

stereospecificity of the lipase used. Funher advantages of lipases-catalyzed rea<.:tions 

indude mild reaction conditions leading to redu<.:ed energy consumption and less thermal 

damage of reactants and products. 

Although enzymes have been used for many years to modify the structure and 

composition of foods. they have only recently become available for large-scale use in the 

industry. According to enzyme manufacturers. progress in genetics and in process 

technology may now enable the enzyme industry to offer products with improved 

propenies at a reduced cost l Vulfson. 1993 l. For industrial exploitation of enzyme

catalyzed reactions. reuse of the enzyme is certainly necessary. To this end. enzymes have 

been immobilized in a variety of ways. Immobilization of enzymes can simply be 
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accomplished by mtxmg an aqueous -;olution of the enzyme with a ~uitable support 

material and remo\'ing the water under reduced pressure: for activation of the enzyme. a 

small amount of water is added to the reaction mixture. Suitable support materials for 

enzyme immobilization include celite. acrylic resm and glass beads. among others. 

Lipases may be used to catalyze inreresterification reactions by restricting the 

amount of water in the medium whereupon the inreresterification reaction predominates 

l)\"er hydrolysis. This is generally achieved by performing the reaction in organic solvents 

v.:htch also help dissolving the reactants. However. it is insufficient to only lower the 

water concentration: re\'ersal of the hydrolysis reaction requires opemtion at a water 

activity IA.,.,J below I 1Halling. 19g4). Thus. attempts for at interesterification in a 

prt!dominantly aqueous environment have resulted in a poor yield of products 1 Stevenson 

era/ .. 11}79 l. 

2.2.1 Structure 

While lipases may be derived from different sources. they all tend to have similar 

three-dimensional structures. Recent research. and success in crystallizing proteins. has 

led to the determination of structures of several lipases by X-ray crystallography. These 

include human pancreatic lipase I Winkler et af.. 1990). lipase from Mucor miehei <Brady 

et a/ .. 1990: Brzozowski et al .. 1991 l. lipase from Geotrichum candidum I Schrag et al.. 

1991!. lipase B from Candida antarctica lCppenberg et al.. 1994) and lipase from 



Candida nn:osa 1 Groshulski et al .. 1993 1. ln general. a lipase is a polypeptide ~hain 

follkd imo two domains. the C-terminal domain and the :'~~-terminal domain. The :'-l"

termmal domain (Ontains the active site \Vith a hydrophobic tunnel from the catalytic 

serine ~o the ..;urface that can :.1ccommodate a long fatty acid chain . . -\ common structural 

feature among lipases is the aJ~ structures: alternating ~-pleated sheets and a-helices 

1 Brady t!t ,lf .. 1990: l"ppenberg t!l al .. 199~ 1. Lipase sequences from se\eral prokaryotic 

and eukaryotic organisms are known 1 Brady et al .. 1990). [t has been shown that they all 

contain a Gly-X-Ser-X-Gly/Aia sequence. where X can be any amino acid 1 Boel et al .. 

19881. This polypeptide .;equence has also been found in serine proteases 1 Schrag er a!.. 

!991 1. The active site of lipases is composed of serine. aspartate/glutamate and histidine. 

which is in the opposite order compared to serine proteases. All lipases characterized to 

date have J serine as their nucleophilic residue ( Uppenberg et al.. 1994 l. The catalytic site 

1 Ser-His-:-\sp l is buried under surface loops folded onto the triad and stabilized by 

extensive hydrophobic and electrostatic interactions 1 Brady er al .. 1990). The mechanism. 

discussed below. is suggested to be equivalent to the mechanism of serine proteases. 

An outstanding feature among these lipases is a 'lid' -region. a pan of the 

polypeptide chain. that moves upon interaction with a hydrophobic surface. The opening 

of this lid is believed to be one of the key features of interfacial activation. The lid may be 

small. as in lipase B from C. antarctica < Uppenberg er al.. 1994), large as in lipase from 

.'vi. miehei 1 Brzozowski et al.. l991 ). or composed of two lids as in lipase from G. 



camlidum t Schrag cr a/ .. 1991 1. The movement of the lid changes the overall -;urf:lce at 

the entrance of the active site. making it more hydrophobic and thereby changmg the 

lipid-binding properties l L'ppenberg era/ .. 1994 L The lipase is not active unkss the lid is 

open since the -;ubstrate cannot reach the buried active site in the closed conformation. In 

lipase from G. candidum the active site is more deeply buried. thus exhibiting a strong 

preference for long-chain fatty acids l Schrager a/ .. 1991 l. 

2.2.2 \lechanism of action 

For the lipase to be active. the lid has to be open so that the active site is 

accessible to the substrate. The substrate. as noted earlier. an ester such as TAG. fatty 

ester of a monohydric alcohol or fatty acid l with H replacing in the hydroxyl group as R~ 

in Figure 2.31. binds to the active site. the carbo:-<yl carbon is positioned in close 

proximity to the hydroxyl oxygen in the serine side chain l Figure 2.J ). This oxygen 

makes a nucleophilic attack on the carbonyl carbon of the substrate and a tetrahedral 

transition state. an acyl enzyme intermediate. is formed. The serine is made a stronger 

nucleophile by the presence of histidine and aspartic acid residues. The hydrogen from 

the hydroxyl group of serine is transferred temporarily to the histidine residue close to the 

serine residue. The intermediate rearranges and the hydrogen is transferred from the 

histidine to the alcohol moiety of the substrate ester and an alcohol is formed. which then 

leaves the lipase. The fatty acid moiety is now covalently linked to the enzyme via an 
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ester bond. this is ~ailed the acyl enzyme. In the ne.xt step. the reversal of the acylation of 

the lipase. the a~yl enzyme is attacked by an alcohol or a \Vater molecule .. -\gain. an acyl 

enzyme intermediate is formed. \Vhich rearranges and a new ester is released . This type of 

mechanism is referred to as a Ping-Pong Bi-Bi mechamsm 1 Reyes and Hi ll. !99-h 

2.2.3 Lipase specificity 

Specificity is a comparative difference in rates of catalysis of ~erta in reactions . 

. -\fter an enzvme is identified as a lipase. several specificities within the dass are 

identified or ~an be expected to occur. The main advantage of lipases. which differentiate 

enzymatic reactions from chemically-catalyzed reactions. is lipase specificity. Lipases 

have turned out to be very useful enzymes for catalyzing various types of reactions with a 

rather wide substrate specific ity. The fatty acid specificity of lipases has been exploited to 

produce SL and to enrich lipids with specific fatty acids to improve the nutritional 

characteristics of lipids. Certain lipases display positional specificity 1 regiospecificity ) 

towards fatty acids in aT AG molecule as well as fatty acid selectivity. 

L:suaily lipases are classified into three categories in terms of their substrate 

specificity: random ( non-regiospecific l or sn-1.3-specific l regiospecific l towards TAG or 

specitic for a panicular fatty acid or. more generally. a class of fatty acids. Examples of 

non-specific lipases include those from Candida cylindraceae. Geotrichum candidum. 



Figure 2.3 The reaction mechanism for lipase-mediated transesterification 
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Connt.'hacreriwn acne.'i. Staplzylucoccus aureus. Penicillium t.'xpanscmr and 

Pseudommws cepacia t \lacrae. 1983: Villeneuve and Foglia. !997 ). They catalyze 

complete breakdown of T .-\G to glycerol and FFA. DAG and ~tAG are intermediates in 

the reaction. but do not normally accumulate to a high level during the r~action. 

pre~umably because they are hydrolyzed more rapidly than T.-\G. 

Lipases that are sn-1.3 specific include those from .Hucor mieht.'i .. Hucor 

janmicus. A.sper!;!illus niger. Pseudomonas jluorescens. Rlri::vpus delemar. Rlri:opus 

arrhi:us and pancreatic lipase 1~tacrae. 1983; ~ukherjee. 1990; Villeneuve and Foglia. 

1997: Gandhi . 1997 \. With these lipases. TAG are hydrolyzed to afford FFA. 1.2 r2.3l

DAG and 2-MAG. The rate of hydrolysis of TAG is normally faster than that of DAG. 

and consequently substantial quantities of both DAG and ~tAG accumulate during the 

reaction . 

The lipase from Geocrichum ccmcliclum is an example of a lipase possessmg r'atty 

acid specificity towards long-chain fatty acids containing a cis-double bond in the 9-

position densen et a/.. 1983; Villeneuve and Foglia. 1997 ). Such lipase will then 

hydrolyze acylglycerol esters of these fatty acids regardless of their position on the 

glycerol backbone. ~loreover. most lipases possess enantioselecti vity towards various 

ester. alcohol and acid substrates. This has been utilized for carrying out resolution of 

enantiomers from racemic mixtures of the substrates. and is highly important in organic 

synthesis 1 Sonnet. 1988 ). Thus. the unique specificity of Geotrichum L·andidum lipase 
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may be useful for production of special fatty-acid fractions. For exampie. ·r-linolenic ;1cid 

1 GL-\ 1 in borage oil has been conct!ntrateJ m t!Sterification reactions catal vzed bv this 

lipase 1 Foglia and Sonnet. 19951. 

Short-chain fauy acid preference is also a lipase specificity that can be exploited 

on an industrial scale. Such lipases may be used in the production of low-calorie SL 

1.-\koh. 19951 or in the dairy industry to obtain specific tlavour components by the rdease 

of short- or medium- chain fatty acids from milk fat 1 Villeneuve and Foglia. 19971. 

2.2.-' Applications 

To date. enzyme-catalyzed reactions have been employed for production of T.-\G 

used for confectionery fat formulations and nutritional applications. ln the area of 

confectionery fats. interesterification of high oleate suntlower oil and stearic acid usmg 

immobilized Rlzi::.omucor miehei lipase produces mainly 1.3-distearoyl-2-monolein 

l StOSu. Other reactants may also be used for production of TAG useful as confectionery 

fats . In particular. there are many reports on enzymatic interesterification of mixtures of 

palm oil fractions and stearic acid or stearic acid esters to produce fats containing high 

concentrations of StOSt and POSt 1 ~tacrae. 1983 ). These TAG are the main components 

of cocoa butter ( Lipp and Anklam. 1998a.bl. and enzymatic interesterification processes 



..:an prcduce tats \.vith compositions and physical properties very similar to cocoa butter 

1\la~..:rae. 19851. 

In the area of nutritional tats. enzyme-catalyzed reactions are used to produce a 

human milk fat ..,ubstitute tor use in infant formula t Quinlan and ~loore. 1993: 

Christensen and Holmer. 1993 : \tukherjee. 1998 1. Acidolysis reaction oi a mix ture of 

tripalmitin and unsaturated fatty acids using a sn-1.3-specific lipase as a biocat;.1lyst 

afforded T.-\G derived entirely from vegetable! oils rich in 2-position palmitate \vith 

unsaturated fauy acyl groups in the sn-\ and sn-3 positions 1 \tukherjee. 1998\. These 

TAG closely mimic the fatty acid distribution found in human milk fat. and when they are 

used in infant tonnula instead of conventional fats the presence of palmitate in the sn-2 

position of the TAG has been shown to improve digestibility of the fat and absorption of 

other important nutrients 'iuch a..s calcium t Quinlan and \'loore. 1993: Lucas era/ .. 1997). 

The possible application of enzyme-assisted reactions for production of lov .. ·er 

value nonspecialty lipids such as margarine hardstocks and cooking oils has been 

investigated tZainal and Yusoff. 1999). When nonspecific lipases such as Candida 

nlindraceae and C. antarctica are used as biocatalysts for interesterification of oil 

blends. the TAG products are very similar to those obtained by chemical 

interesterification 1 Macrae. 1983 ). Therefore. replacement of chemical interesterification 

by an enzyme process giving similar products is technically feasible. although it has not 



yet been ;1dopted on a commcrcial scale. largely because of the comparatively high 

process ;1nd (atalyst costs. 

Enzymatic imeresterification can ;1lso be used for production of fats and oils 

containing nutritionally important PL'FA. such :1s EPA and DHA. For example. various 

vegetable and fish oils have been enriched v.-·ith EPA and DHA using enzyme-catalyzed 

reactions 1 .-\koh. 1996a ). L" se of this technique to produce SL with ~tCF A and PCFA 

loc:1ted specifically in either thc .m-2 or sn-1.3 positions of the TAG has been described. 

Enzymatic processes are particularly suitable for the production and modification of 

lipids conraimng PL'FA. because these unstable fatty acids are susceptible to damage 

under the more severe conditions used for chemical processing. 

If regio- or stereospecific lipases are used to interesterify oil blends. the products 

formed are different from those obtamed by chemical imeresterification. and may exhibit 

better functional properties. For example. interesterification of blends of canola and palm 

oils. using the sn-1.3-specific Rhi:.opus delemar lipase as catalyst. gave oils with 

improved tluidity compared with the original blends or chemically interesterified 

products. 

lnteresterification of blends of palm and hydrogenated canola oils and cottonseed 

and hydrogenated soybean oils using sn-1.3-specific lipases as catalysts gave fats with a 

low trans fatty acid content that were effective as margarine hardstocks (Mohamed and 

Larsson. 1994 ). Reaction of mixtures of palm stearine and lauric fats using immobilized 
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Rhi:onwcor mit'ht'i as a catalyst also produced fats that were functional as margarine 

hardstod.s 1 Posorske t't ul.. 19881. With these enzymatically interesterifieJ fats. 

margarine ~.:ouiJ be formulated \'-:ithout using hydrogenated fats. 

2.3 Sources of fatty acids for structured lipid synthesis 

The unsaturated fatty acids belonging to the co.3. oo6 and cd) families may be 

induded in SL to promote health and nutrition (Kennedy. 1991 l. The clinical advantages 

of SL are derived from the short-. medium- and long-chain fatty acids and the uniqueness 

of the SL molecule itself. \-lany of these effects are due to the differences in metabolic 

fate of the vanous fatty acids involved. lt is important to consider the metabolism of fatty 

actds to understand their physiological effects. ln general. the metabolism of w3 and w6 

PL"F.-\ that fadlitates prevention and treatment of different diseases has been addressed 

by considering changes in the eicosanoids in the circulatory system. Since eicosanoids are 

ultimately derived from PCFA provided by the diet. it is clear that qualitative and 

4uanritative changes in the supply of dietary PUFA will have a profound effect on the 

production of eicosanoids. 

2.3.1 Short-chain fatty acids (SCFA) 

Short-chain fatty acids (SCFAI are saturated aliphatic monocarboxylic acids and 

include acetic (2:0). propionic !3:0) and butyric acids (4:0). They are produced by 



fermentation of dietary carbohydrates in the human gastromtesti nal tract 1 Stein. 1999 L 

SCFA are present in the diet in small i.lmounts. for example act:tic acid in vinegar and 

butyri~.: i.lcid in bo,·ine milk and butter. They may also be present in fermented foods. In 

humans. it is estimated that SCFA contribute to Jet of total energy expenditure 1 Hashim 

and Babayan. 1978 l. 

In nutritional applications. there has been a growing interest in the use of SCFA as 

an alternative or additional source of energy to their \lCFA and LCFA counterparts. The 

SCFA. namely acetate. propionate and butyrate. are rapidly absorbed hy the intestinal 

mucosa 1 Ruppin t!t al .. 1980! and provide an important source of calories. Short-chain 

triacylglycerols tSCTl such as triacetin and tributyrin are neutral. chemically stable and 

rapidly hydrolyzed by gastric and pancreatic lipases to glycerol and their respective SCFA 

1 Lairon I!I al .. 1980). Parenterally administered SCT are readily hydrolyzed to glycerol 

and FFA m the bloodstream. The fact that tnacetin. in contrast to tributyrin. is water

soluble and does not require emulsification makes it a very versatile alternative energy 

source to be incorporated into total parenteral nutrition 1 TP~ 1 and l!nteral nutrition 

regimens 1 Bailey et al .. 1991 ). 

The use of SCT in enteral nutritional formulas is also encouraging. Recently. 

Kripke et al. ( 1991) demonstrated that a chemically synthesized diet containing ~0'7c 

1 w/w l of nonprotein as SCT ( I: I . triacetin and tributyrin l maintained body weight. 

improved nitrogen balance and liver function and enhanced jejunal and colonic mucosal 



adaptation in rats after 60Cc distal :-;mall-intestine resection v,:ith ~t:~.:ectomy. when 

compared to short-intestine antmals recei\'ing a diet without supplemental lipid calories 

with ~lCT. Thus. enteral administration of SCT to either the small or large intestine may 

pronde a useful alternative therapy in patients \1.-ith intestinal loss due to tnjury te.g. :-;hort 

bowel syndrome). The use of SCT. in combination with LCT. in regiml!ns of TP~. ha..s 

been shown to ~.kcrease the in<.:idence of complications. such as leakage from colonic 

ana..stomoses 1 Lm~.:h t:'l a/.. I Y9-+l and intestinal atrophy during prolonged TP~ 1 Linseisen 

and \Volfram. 19971. 

2.3.2 \ledium-chain fatty acids 1 \-ICF:\) 

Continued reports of inefficiencies tn intravenous lipid metabolism and the 

accumulation of ne\v findings that parenteral and enteral lipids can also suppress immune 

function 'Sorbrado er a/.. 1985: Hamawy et al.. 1985: Seidner er al.. 1989) have 

prompted a search for alternative lipid sources. A number of novel lipid moieties such as 

~tCT. SL. and w3 fatty acids provide new opportunities for improving fat utilization and 

immunologic responsiveness . 

~tedium-chain fatty acids ( ~CF A) are saturated fatty acids with 6-12 carbon 

atoms (Bach and Babayan. 1982) and are derived primarily from tropical fruit oils such as 

those of coconut and palm kernel (Akoh. 1995. 1997: Bell er al .. 1991). For example. 

coconut oil naturally contains some 65o/c MCFA <Young. 1983). One of the first medical 
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foods developed as an alternative to conventional lipids \V:.ts \ICT. Pure \ICT have :1 

caloric value of 8.3 ~alories per gram. However. they do not provide essential fatty acids 

1 Heird ~r a/ .. 1986: Lee and Hastilov.-. 1999!. \ICF.-\.. \vhich are often used to produce SL 

1 Haumann. !977a). are more hydrophilic than their long-chain counterparts. and hence 

solubilization a~ mice!Jcs IS not a prerequisite for their ab~orption t Ikeda ~r a/ .. 1991 1. 

\tCT can also bt: incorporated into mucosal cells without hydrolysis and may readily be 

oxidized in the cell. L·nlike other fany acids. \tCT pass directly into the portal vein and 

are readily oxidized in the liver to serve as an energy source. Thus. they are less likely to 

be deposited in the adipose tissues t \tegremis. 1991 l and are more prone to oxidation in 

the tissues 1 \tascioli t!t al .. 1987). \1CT are well tolerated by the enteral route and are 

frequently used in patients with maldigestion and malabsorption. 

\tCT may offer ..;everal advantages over LCT. Their lower melting point. greater 

solubility and smaller molecular size accounts for their easy absorption. transport and 

metabolism compared to LCT 1 Babayan. 1987 l. \tCT are hydrolyzed by pancreatic lipase 

more rapidly and completely than are LCT t Bell ~t a/ .. 1991 l. They may be directly 

absorbed by the intestinal mucosa with minimum pancreatic or biliary function. They are 

transported predominantly by the portal vein to the liver for oxidation 1 Heydinger and 

:'\iakhasi. 1996) rather than through the intestinal lymphatics (Figure 2.-H. In addition. 

\tCFA are more rapidly oxidized to produce acetyi-CoA and ketone bodies and are 

independent of carnitine for entry into the mitochondria. 



Since \tCT alone do not ~ontain essential fatty acids. they need to be used \.Vith LCT 

containing essential fatty acids to provide a balanced nutrition in enteral and parenteral 

produ~ts ( HaumJ.nn. I997a: l'lrich eta/.. 19961. Thus. in many medical foods. a mixture of 

\ICTILCT is used to provide both rapidly metabolized and slowly metabolized fuel as \"·ell 

as ~s.-;ential fany acids. Clinical nutritionists have taken advantage of \ICT's simpler 

digestion to nourish individuals who cannot utilize LCT. Any abnormality in the numerous 

enzymes or processes involved in the digestion of LCT can cause symptoms of fat 

malabsorption. Thus. patients with diseases likt! Crohn's disease. cystic fibrosis. colitis and 

enteritis have shown improvement when MCT is included in their diets (Kennedy. 1991 ). 

:VICT are also increasingly utilized in the feeding of critically ill or septic patients who 

presumably gain bendits in thl:! setting of associated intestinal dysfunction. Funher 

investigation -;hould darify potential roles for MCT in patients with lipid disorders 

associated with lipoprotein lipase and carnitine deficiencies. :VICT may be used in 

confectioneries and in other functional foods as tlavour carriers ( Megremis. 1991 ). MCT 

have clinical applications in the treatment of lipid malabsorption and obesity (Bach and 

Babayan. 19821. 

2.3.3 Long-chain fatty acids tLCF A) 

Dietary lipids in medical foods are commonly composed of LCf. These lipids 

supply a source of noncarbohydrate calories. LCT are generally recognized as useful 
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Digestion. absorption and transport of medium-chain and long-chain fatty 
acids 
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nutrient substrates. Hov.ever. there are some concerns regarding their ~linical application. 

The Jigestion and absorption of LCT require a normal functioning ga..•arointesllnal tract. 

v. hich may be compromised in patients with maldigestion. malabsorption and critical 

illness. These lipids are slo\vly cleared from the systemic circulation and may not be readily 

oxidized. 

There ha...; been ..;orne concern that excessive linolt!ic acid 1LAl may result in 

excessive production of e1cosanoids. which may affect immune competence and vascular 

integrity during the stress response to acute injury. ln a study of several burned patients who 

were given enteral products with a variety of lipid-based formulas. the intravenous solution 

highest in linoleic acid 1 LA l content was associated with increased length of hospital stay 

and the highest mortality rate 1 Gottschlich ~t ul .. 19901. These tindings wc.:re con tinned by 

Daly ~r a/. 1 1992) who studied postsurgical patients in which two diets. one high LA and the 

other \.Vith only 2CiC of the total calories from LA. were compared. The S L diet. Impact~. 

\vhich contained low levels of LA resulted in decreased infections and decreased length of 

hospital stay as compared to the other enteral formula. Bower et al. t 1995) aJso 

demonstrated a decreased length of hospital stay and decreased infection rate using diets 

with a low level of LA and added fish oil. 
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2.3.-1 Omega-3 fatty acids 

Omega-3 fatty acids have been the ..;ubject of considerable nutritional studies as 

the\ arc ~on .sidered to be essenti;.1l fatty ;.1~ids 1 EFA l and must be provtded in the food 

because they ~annot be easily manufactured within the body. Examples of w3 fatty acids 

include a-1 inolenic acid 1 ALA 1. EPA and DHA. The parent. and simplest. member of the 

w3 family is .-\LA Sources of w3 Pl"FA include seafood and cenain plants . ~Iarine oils 

~ontain moderately high levels of EPA and DHA 1 Shahidi and Wana.,undara. 1998al. 

whik plant sources including tlaxseed. canota and soybean oils contam ALA (8eare

Rogers. 1988: Rice. 19911. EPA and DHA are synthesized by algae and hence enter the 

food web through the animals such as fish that feed on algae 1 Groom. 1993 ). 

Pl'F A have t\o.·o or more double bonds in their backbone structure. There are two 

groups of PCFA. the cJJ6 1 or n-61 and the wJ 1 or n-31 families defined by the position of 

the first double bond in the molecule staning from the methyl end of the chain 1 Holman. 

1988 ). :\simple shorthand notation is used to define PUFA structure. For example. GLA 

is 18:3(1)() tor 18:3n-6) tFigure 2.51 while LA is 18:2(1)6 Cor l8:.2n-6). The first number 

defines the number of carbon atoms in the chain while the second one after the colon 

specifies the number of double bonds. The parent compounds of the Ul6 and ro3 series are 

LA ( 18:2(1)6) and ALA ( 18:3w3L LA and ALA are metabolised by a series of alternating 

desaturation (in which a further double bond is introduced) and elongation ~in which two 

carbon atoms are added) as outlined in Figure 2.6. 
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Figure 2.5 Chemical structures of selected long-chain fatty acids (LCFA> 
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Figure 2.6 \ietabolic pathways of w3 versus ~ fatty acids 
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lt is generally beli~ved that th~ enzyme systems involved in the metabolism of the 

two types of PLT.-\ are identicaL [t has also been established that the w3 and the w6 

PLF.-\ compete with one another in the metabolic pathway !Sprecher. 1982). On the 

'"hole the enzyme systerns seem to have a higher affinity for the w3 PLFA so that. other 

things being equal. the w3 PL'F.-\ will be preferentially metabolised. 

ln the cell there is a competition between the two precursors and high amounts of 

w6 t i.e . linokic acid\ inhibit the conversion of .-\LA to EPA. Because of this. the key 

factor in regards to the consumption of these classes of fatty acids is the ratio in which 

they are consumed. Typical western diets comain 10-30 glday of LA and 0.5-1 .0 glday of 

.-\LA I the primary w3 FA in Western diets). With current dietary patterns. the observation 

that .-\LA -;upplementation fails to increase blood EPA concentration may be easily 

understood 1 Rice. 1991 l. 

DHA has also gained considerable attention by itself since a number of studies 

have shown its importance in early neurological and visual developments (Kim and 

Edsall. 1999\. DHA is one of the major components of the gray matter of the brain 

1 Ward. 1995 l. the phospholipids of the retina ( Akoh. l995). the testes and the sperm 

1 Langholz ec al.. 1989). DHA deficiency is a problem in preterrn infants that have 

inadequate fat stores. The presence of sufficient DHA in mother's milk is required for 

normal visual development. otherwise supplementation is necessary (Crawford. 1997: 

Crawford et al .. 1999: Haumann. l997b). 
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There is evidence for retro-conversion of DHA to docosapentaenoic acid 'DP.-\ l 

and EP.-\ in humans 1.-\ckman and Ratnayake. 19891 . . -\fter inge:-.tion uf ethyl esters uf 

DH.-\. the DHA and EP.-\ in plasma phospholipids was increased. but DP.-\ remained 

essentially unchanged 1 Kinsella. 1990L However. ingestion of DHA increased the levels 

of DHA. DP.-\ and EPA in the phosphatidylcholine 1 PCl and phosphatidylethanolamine 

1 PEl fractions of the platelets . Blood platelet aggregation was significantly decreased by 

ingestion uf DH.-\. thus supporting the view that dietary w3 Pl"F.-\s may alleviate certain 

forms of cardiovascular dysfunction. 

The optimal intake of w3 and w6 fatty acids has been studied and ..;uggestions 

made that the dietary ratio of the w6 to (!)3 Pl"F.-\ should be in the range of~: I to 10: I 

1C1ston and Leeson. 1990\. Today. the ratio uf w6/w3 is bet\veen 10-.20: I m Wt!stern 

Europe and the L·nited States. whereas during evolution it was I: 1 1 Simopoulos. 19991. 

The western diet currently contains an average of 1.7g w3 Pl.F.-\ per day of .. vhich 90°c is 

.-\LA 1Yan Elswyk. 1993). It has been recommended that the daily intake of w3 PCFA 

should be increased to 3.0 g/day of which I g should include EP.-\ and DHA. The 

recommended daily intake of w3 PUFA in Canada is a minimum of 0 .55 g/1000 kcal or 

0.5C:C of energy< Ajuyah et al .. 1991 ). 

The therapeutic benefits of w3 PUFA are quite varied. involving a broad range of 

metabolic. cardiovascular and immunological conditions. Epidemiological studies have 

attributed the low incidence of cardiovascular di!)ease in Eskimos to their relatively high 



dietary intake of w3 PL'F.-\ 1 Bang ~md Dyerberg. 1972. 19861. Fish oil has been shown to 

IO\.\·er systemic blood pressure in patients with mild hypertension in a controlled. double

blind. ~roSSl)\'Cf .. ;rudy t Le\'inson t.'t al .. 19901. Fish oil supplementation has also been 

shown to de...:rease serum TAG and cholesterol levels while increasing concentrations of 

high-density lipoprotein t HDLl cholesterol t Kinsella. 1986). Chronic immunologically 

mediated diseases including atopic dermatitis and psoriasis have been shown to impro\·e 

wtth short-term use of fish oil supplementation t Bittiner t!t a/ .. 19881. 

\-tany of the physiological effects attributed to w3 fatty acids relate to their role in 

eicosanoid production . Eicosanoids are short-lived. locally-acting hormone-like 

substances and exert diverse actions on the cardiovascular. reproductive. respiratory. 

renal. endocrine. skin. nervous and immune systems. Eicosanoids include the prostanoids 

1 prostaglandins. prostacyclins and thrombo:(anes 1. leukotrienes and hydroxy fatty acids 

!'Wardlaw. 1996J. They are synthesized from 20-carbon PL"F.-\ with three. four or five 

double bonds of either w3 or w6 families. The three important fatty at:ids involved in 

eisosanoid production are dihomo-y-linolenic acid t DGLAl. arachidonic acid ( AAI and 

EPA t Braden and Carroll. 19861. As they have different numbers of double bonds. they 

give rise to different series of eicosanoids. Thus. prostanoids of !-series and leukotrienes 

of 3-series are formed from DGLA. AA produces prostanoids of 2-series and leukotrienes 

of ~-series. while EPA is converted to prostanoids of 3-series and leukotrienes of 5-series. 

The two families of fatty acids. ro3 and w6. compete for the same enzymes. and hence. 
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depending on the ;.l\·ailabditv of fatty acids. Jifferent series of eicosan01ds are formed 

1 Figure :2.6 L 

The eicosanoids formed from :\:\ and EP.-\ are biologically more active and more 

important than those of DGLA 1 Alexander. 1998 ). These fatty acids are usually derived 

from phospholipids by the action of phospholipase A:. Prostanoids are produced m most 

tissues. whereas leukotrienes are generally formed in different blood celb. EP.-\ can serve 

a..o.; a precursor of thromboxane :\~ tTX.-\, l and prostacyclin I, 1 PGI,, 1 Figure 2.6). In 

platelets. :\:\ forms TXA: whereas EPA forms TXA •. In endothelial cells of blood 

vessels. the major product of:\:\ is prostacyclin 1: 1 PGI:) and that of EPA is PGh. TXA, 

differs from TXA: in that 1t does not induce aggregation of platelets. Hovvever. PGI. is as 

effective as PGI: in inhibiting platelet aggregation 1Rice. 1991 ). \-loreover. both PGI, :md 

PGI: are vasodilators . For these reasons. dietary EPA is implicated in reducing the risk of 

thrombosis. Prostaglandin E 1 1 PGE 1 l derived from DGLA also has antiaggregatory and 

anti-intlammatory activities (Fan and Chapkin. 1998). Leukotrienes. on the other hand. 

promote smooth muscle contraction. 

2.3.5 Omega 6 fatty acids 

The w6 fatty acids have at least four roles : tal modulation of membrane structure: 

1 bl formation of short-lived local regulating molecules such as eicosanoids: I c) control of 

water impermeability of the skin: and (d) regulation of cholesterol transport and 



~holesterol synthesis 1 Horrobin. 1992b 1. The most important w6 fatty acids are LA. GLA. 

DG LA and .-\A. 

2.~ Significance of y-linolenic acid 1 G L\) 

GLA 1 cis.cis.cis-6.9.12-octadecatrienoic acid). the tirst metabolite of LA. is 

formed from it by ~6-desamration. It is an essential PCFA 1Horrobin. l992al and must be 

provided in the food be~ause it cannot be easily manufactured within the body. in the 

human body. GLA is merely an intermediate in the pathway from LA to AA and does not 

accumulate in mammalian ~ells. 

GLA 1s important biologically. being an indispensable precursor for the synthesis 

of long-~hain PL'FA having structural functions in cellular membranes and of 

eicosanoids. lt also affects cholesterol metabolism by reducing total cholesterol 1 more 

efficit!ntly than LA 1 and low-dt!nsity lipoprotein ( LDLI cholesterol as well as increasing 

HDL cholesterol. Like other w6 fatty acids. GLA has an antiaggregating effect on 

platelets 1 Schmitt-Rozieres et al .. 1999). 

The rate limitation of the ~6-desaturase in the w6 pathway is important in 

understanding the claims for health benefits of GLA. ~6-Desaturase activity. required in 

GLA synthesis from LA. decreases with age and is also depressed by stress-related 

hormones. adrenalin and cortisol. high cholesterol levels. high alcohol intake. fatty acids 

of the w3 family. and in the condition of diabetes. 



:\Iany investigators have a~tively investigated the ~oncentr;.ttion of GL.-\ from 

borage. c\·ening primrose and fungal oils for pharmaceutical and dietetic purposes . 

. -\ vailable methods for enrichment of GLA. include urea complexation 1 Traitler er a/ .. 

19881. lov.·-temperature crystallization tYokochi er ai.. 1990>. separation on Y-zeolite 

1.-\rai ec a/.. 19871. selective enzymatic hydrolysis ( Rahmatullah et a/.. 199~b 1 or 

esterification t :\-tukherjee and Kiewiu. 1991 ; Rahmatullah ec a/ .. 1994a; Schmitt-Rozieres 

et ai.. 1999\. 

2 . ..a.1 ~utritional and medicinal uses of GLA 

The literature is replete with claims for therapeutic benefits of GL.-\. Disorders for 

which GLA. efficacy has been tested. under controlled clinical trials. include atopic 

eczema. hypertension. multiple sclerosis. diabetic neuropathy. premen,.trual syndrome 

and several types of cancer. ln some categories the results have been inconsistent. 

Several groups of researchers have argued that GLA. DGLA. and A.A are present 

in human milk for a very specific purpose 1Clandinin et ai .. 1982). They contend that the 

conversion of LA to GLA in humans is well established as a rate-limiting metabolic step 

1 Brenner. 1982 ). with only a small proportion of dietary LA being converted to GL-\ and 

beyond (.Mank.u eta/.. 1988 ). The Pl:FA beyond the rate-limiting step are critical for the 

development of many tissues and especially those of the brain. which by weight contain 

about 209c of ~-6-desa[Urated PUFA. According to these investigators. infants may have 



difficulty in producing adequate :.tmounts of all of the EF.-\s if LA is the only dietary 

soun.:e of c.u6 Pl.F.-\. and this ts perh:.tps wh~ prdormed GL.-\. DGL\ and .-\.-\ arc present 

in human milk . 

GL-\ has been tested by oral administration of evening primrose oil 1 EPO 1 in 

order to inhibit the grov.;th of a variety of animal tumours. particularly those of the 

mammary glands 1 Horrobin. 199~ l. Administration of GL.-\ to animal-; with tumours . 

including nude mice with implanted human tumours. substantially limited cancer growth 

1 Horrobin. 1993 l. These animal studies encouraged the development of a eli meal research 

program. 

For most human cancero,;. GL\ has been found to be 1Jne of tht.: most effective 

selective agents. Various routes and ionns of administration of GLA have been tried in 

attempts to treat human cancers. High doses of oral GLA in the fonn of EPO have 

produced evidence of responses and prolongation of life without side dfects in patients 

with liver. breast. brain. and oesophageal cancer ( Horrobin. 199~ l. 

There has been an extensive study on EPO in the treatment of atopic eczema 

(Burton. 1990. \-larshall and Evans. 1990). In young aduhs with atopic eczema. it has 

been found that plasma levels of LA are high. whereas those of GL.-\ are low. thus 

supporting the theory of a block in PEF.-\ conversion at the commencement of the w6 

pathway 1 Horrobin and Manku. 1990). Trials have shown significant improvements in all 

features of the disease. but especially in itch. Studies have found that GLA can 



signifi~antly reduce skin roughne-.;s tn atopic eczt!ma 1 :\larshall and Evans. i 990l. 

:\lort!ovt!r. the need for otht!r medications such as steroids that may have to:'(ic effects in 

long term use was reduced. 

Clinic.ll studit!s of the use uf GLA in breast pain and premenstrual ..;yndrome have 

..;hov.n. in most cases. that GLA is effective in relieving such symptoms. :\s a result the 

British Department of Health has licensed EPO 1 Efamast l for the treatment of breast pam 

t Burton. 1990: Horrohin. !992al. 

Diabetes impairs the conversion of LA to its ~6-desaturated metabolites in both 

animals and humans 1 Brenner. 19821. It has been suggested that this reduced ability to 

desaturate LA may account for many of the long term renal. retinal and neurological 

complications uf diabetes 1 Horrobin. 1992a 1. In diabetics. GLA has been found to reverse 

neurological damage dulu. 1990l and to lower plasma cholesterol and TAG. In 

akoholics. GLA has been found to accelerate recovery of liver function and to reduce the 

..;everity of withdrawal symptoms 1 Glen et al.. 1990l. 

2.-1.2 Potential sources of GLA 

GLA itself is not present in high concentrations in most foodstuffs and there is no 

simple. commercially viable method for its synthesis at present. lt does occur. however. 

in relatively high concentrations in borage. t:!Vening primrose. blackcurrant and fungal oils 



1 Phillips anJ Huang. 14961. Tht:sl! -.;ourct::-. of GL\ are Jiscus-.;ed in the following 

-;ections. 

2.~.2.1 Borage I Borago officina/is L. I 

Borage is an annual herbaceous plant belonging to the family of Boragenaceae and 

ts commercially grown in ~orth America. The Borago genus includ\!s three species 

including Borago officillalis. commonly known as borage 1 Helme. 1996). Large-scale 

commercial production of borage presents unique challenges because of the plant" s 

tndeterminate vegetative growth. lack of concentrated tlowering and seed set and non

uniform seed maturation 1 Simpson. 1993a.b l. Borage oil 1 BOl. e:uracted from seeds of 

the blue. star shaped borage tlower. is gaining much attention by alternative health 

practitioners and mainstream medicine alike for its profound medicinal properties. 

Although the oil is getting all of the credit. it is actually the oil's active component. GLA 

that has drawn the interest of researchers. The seeds of borage contain approximately 

38°c of oil with a GLA content of 20-25'7c 1 Beaubaire and Simon. 1987 ). The level of 

GLA tn the seeds is at around 7c:-c and this is about three times that in evening primrose 

seed. The oil is made up of 95.7C£: neutral lipids. 2.0'7c glycolipids and 2.3% 

phospholipids \Senanayake and Shahidi. 2000bl. Neutral lipids of BO are composed of 

TAG t99. 1'7cL DAG (0.06'7cl. ~fAG t0.02~cl. FFA 10.91%) and sterols (0.02%) 

tSenanayake and Shahidi. 2000bl. 
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2 . .a.2.2 Enning primrose IOenothera biennis L.l 

En:ning primrose is a biennial plant belonging to the family of Onagraceae and is 

a ~ommon weed that is native to :--;orth America. Oil obtained from Oenorhera hit:nnis is 

designated as evening primrose oil t EPOl. Interest in this oil has intensified in recent 

years because of its GLA content. Although the evening primrose plant does not produce 

a high yield of seeds compared to the well-known commercial oilseeds. it is preferred to 

other sources of GLA because it is easy to produce and does not contain any .-\L.-\ . .-\t 

present. EPO is the most important source of GLA. which is in growing demand for its 

dinical and pharmaceutical applications t Hudson. 1984). 

EPO is currently available in over 30 countries as a nutritional supplement or as a 

constituent of spec1alty foods. The seeds are cultivated in at least 15 countries. including 

Canada. Cnited States. France. Holland. Hungary. L'nited Kingdom. Yugoslavia . 

.-\ustralia and :\"ew Zealand. The C .S. and Canada currently produce 300-400 tons of the 

seeds annually . In a number of countries. certain nutritional products require 

governmental registration before they can be marketed. EPO has received such 

registration in Australia. Canada. Cyprus. Denmark. Fir.land. France. Italy. Phillipines. 

Spain. Sweden. Switzerland and the Cnited Arab Emirates. Several large organisations 

have been able to establish moderately large-scale extraction of the oils. The EPO 

capsules contain 10 to 1.29C GLA and in Canada are marketed by .. Efamol" company. 
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The oil (Ontent of seeds is 17-25C:C i Wolf er a! .. 1983: Beaubaire and Simon. 

1987). of \Vhich 7-l0°c is GL\ tGibson eta! .. 1992: Fiddsend. 1996L The total GL.-\ 

(Ontent of the '\eeds is approximatdy 2.5cc 1 Wolf et ,d .. 19831. The 011. as marketed. is 

made up of 97-98C:C T.-\G. ! .5-2.0cc unsaponifiable matter and 0.5-l.OC:C polar lipids 

l Hudson. 198-+). The EPO is generally obtained bv mechanical pressure follmved by 

extraction with hexane l Helme. 19961. The seed oi Is from various 0t'norltera ~pecies 

have been (haracterized: the highest amount of GLA was found tn 0 . acerviphilla nova 

l l6°c 1 and 0. paradoxa l l-+ac 1. There are preliminary indications that EPO may be more 

dfecti\·e in some of its physiological effects than other oils in which GLA occurs. One 

possible ~!:<.planation is that GL.-\ is present in EPO almost entirely as molecular species 

of T.-\G in which one GLA is combined with t\\'O LA molecules 1 Fieldsend. 19961. 

Another possibility is that minor components of EPO. not GLA. are responsible for some 

of the effects. GLA from other oils 1 borage. blackcurrant and fungal 1 may also be 

biologically less effective than that from EPO. partly because of the other fatty acids 

present and partly because of the different T.-\G structure of the oils 1 Horrobin. 1990). 

The TAG stereospecific structure of EPO is distinct. with GLA being concentrated in the 

sn-3 position (Lawson and Hughes. 1988 ). 
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2.4.2.3 Blackcurrant (Ribes nigrum L. l 

Blad.;.~..:urrant is a p~r~nnial berry crop belonging to the family of Saxifragaceae. lt 

is mainl~ culti\ateJ in Europe and .-\s1a. Blackcurrant is a round . dull black berry t Helme. 

19961 and its seeds contain about 30C:C oil tTraitler t!C a/ .. 198-+ l which may be extracted 

by hexane 1 Helme. 19961. The oil differs from that of BO and EPO in that it contains two 

(.1)-3 falty acids. namely .-\LA t 18:3w3 1 and stearidonic acid t 18:-+w3). Blackcurrant oil 

tBCOl. ha\ing a GL.-\ content of 15 to 19CC tTraitler era/ .. 198-+: Walker. 1991 l . also 

~.:on tams a potent GL.-\ inhibitor. erucic acid 12.2: I w9 l which reduces ib advantage as a 

medicinal oil 1 Walker. 1991 1. L.-\ is the major PL'F.-\ found in the BCO 'Lawson and 

Hughes. 19881. The main uses of BCO. as in the case of horage and evening primrose. are 

generall y based on claims concerning pharmacological propenies ofGL.-\ tHelme. 1996 1. 

2.4.2.4 Other sources of GLA 

GLA also occurs in unicellular organisms such as blue-green algae. Spim/ina 

tCiferri and Tiboni. 1985: Ward. 19951 as well as fungi such as phycomycetes and 

protozoa (Carter. 1988). The Spirulina has historically been utilized as food by people of 

both Central America and Central Africa. Today. Spirulina is widely ~old in specialty 

nutrition stores throughout Europe and ~onh America . .-\round lOS: o f dried Spimlina 

are lipid and of which 20-25q. is GLA. At its commonly recommended daily dose of lOg. 

Spimlina provides .200-250 mg GLA (Carter. 1988). Cenain fungi. including species o f 



Rlzi:opus. Jlitt"or and Jlortit'rt!llll. also produ~e oils ~ontaining GLA 1 Phillips and Huang. 

19961. Particular interest is paid to the observation that GL\ is present in human milk 

t Clandinin er ul.. 1982: Carter. 19881. 

., -... ~ Enzymatic modification of fats and oils to produce structured lipids 

Several research groups have successfully incorporated wJ PL"F:\ into plant oils 

usmg t:nzyme-~atalyzed reactions <Sridhar and Lakshminarayana. 1992: Huang er a/ .. 

1994: Huang ;..tnd .-\koh. 1994: .-\koh and Sista. 1995: .-\koh era/ .. 1996: Ju ec a/ .. 1998: 

.-\koh and \-toussata. 1998 l. Huang and .-\koh ( 19941 studied the ability of immobilized 

lipases L'v160 from .'vlucor miehei and SP435 from Candida ,mrarccica to modify the fatty 

acid ~omposition of soybean oil by incorporation of w3 PL"F.-\. The transestenfication 

reaction was carrit:d out with free fatty acid and ethyl esters of EPA and DHA as acyl 

donors. \Vith free EPA as acyl donor. ~160 gave a higher incorporation of EPA than 

SP435 . However. when ethyl esters of EPA and DHA were the acyl donors. SP435 gave a 

higher incorporation of EPA and DHA than Cv160. \-toussata anJ .-\koh 1 1997) 

investigated the ability of lipase PS-30 from Pse11domonas sp. to modify the fatty acid 

profile of melon seed oil by incorporation of oleic acid ( 18: 1(1)9). Okic acid content 

increased from 13.5 to 53'7C. while linoleic acid ( 18:2ro6) content decreased from 65 to 

3JC7c. Huang et a/. (19941 incorporated EPA into crude melon seed oil by two 

immobilized lipases. IM60 from .Hucor miehei and SP435 from Candida antarctica as 



biocatal:ysts. Higher EPA incorporation was obtained using EPA ethyl ester than using 

EP.-\ free fatty acid for both enzyme-catalyzed reactions. 

Akoh t'f a/. 1 19951 used two immobilized lipases. nonspecific SP-+35 from 

Candida ,mttlrctica anJ sn-1.3 specific lM 60 from Mucor miehei. as biocatalysts for 

restructuring of trilinolein to incorporate EPA and DHA with ethyl esters 1 EEPA and 

EDHA. respectively\ as acyl donors. With EEPA as acyl donor. the total EPA product 

yields \\ith L\160 and SP-B5 were 79.6 and 81.-F7c. respectively. However. with EDHA as 

acyl donor and lM60 and SP-B5 as biocatalysts. the total DHA product yields were 70.5 

and 79. y :c. respectivdy. 

Recently. EPA and capric acid 1 IO:Ol have been incorporated into borage oil using 

two immobilized lipases. SP-B5 from Candida antarctica and IM60 from Rhi::.omucor 

mieltei as biocatalysts 1Akoh and :Vtoussata. 1998l. Higher incorporation of EPA 1 10.1%) 

and 10:0 t26.Y7cl was obtained with IM60 lipase. compared to X.8 and 15.5%. 

respectively. with SP435 lipase. 

Ju t!t a/. 1 1998) incorporated w3 PCFA into the acylglycerols of borage oil. They 

have selectively hydrolyzed borage oil using immobilized Candida ruf?osa lipase and 

then used this product with w3 PUF A for the acidolysis reaction. The total content of w3 

and w6 PUFA in acylglycerols was 72.8% following acidolysis. The contents of GLA. 

EPA and DHA in the structured lipid so prepared were 16.5. 19.8 and 18. l%. 



respectively . The corresponding w.3/w6 ratio changed from 0 to 1.09 after the 

modi fic:.nion. 

The incorporation of GLA into the acylglycerols of borage oil. in an acidolysis 

reaction catalyzed by .'v!ucor mit!lzt!i lipase in an organic solvent. was sy..,tematically 

studied by Hu;1ng t!t al. 1 !9991. In this work. GLA-rich fatty acids derivc:d from the urea 

compleution l)f borage oil \vere used as a substitute for pure GLA. They "electively 

hydrolyzed borage oil using an immobilized Ct.mdidu rugosa lipase and increased the 

GL.-\ content in the unhydrolyzed acylglycerols from 23.6 to 52. 1 ac and then used this 

product with GLA for acidolysis. After acidolysis reaction. the GLA content in the 

acylglycerols of borage oil wa...-; increased from 52.1 to 75°c . 

. -\koh and Sista 1 1995 l have previously reported the modification of fatty acid 

composition of borage oil using EPA ethyl ester with an immobilized nonspecific SP-+35 

lipase from Candida antarctica as a biocatalyst. The highest incorporation 131 '1- l was 

obtained with 20'7c SP435 lipase .. -\t a substrate mole ratio of 1:3. the corresponding ratio 

of w3 to ro6 PL"FA was 0 .64. Cnder similar conditions. Akoh et al. 1 1996 l were able to 

increase the w3 PUF.-\ content (up to 43'k) of evening primrose oil with a corresponding 

increase in the w3/w6 ratio from 0 .01 to 0 .6. Sridhar and Lakshminarayana ( 1992) were 

able to effectively modify the fatty acid composition of groundnut oil by incorporating 

EP.-\ and DHA using a .m-1.3 specific lipase from Mucor miehei as the biocatalyst. The 
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contents of EPA and DHA incorporated into groundnut oil \.\:ere 9 .5 and 8.0cc. 

respecti \'dy. 

Yankah and .-\.koh < 20001 -;ynthesizcd t\.\O different SL by transesterifying 

tristearin with caprylic acid 18:01 or oleic acid 1 18 : I l. The reaction was catalyzed by L'-'l-

60 lipase from Rhi:.omucor mit:lzei in hexane. The c::ffects of reaction par:1metc::rs ;_tffecting 

the incorporation of capl)-·lic acid into tristearin were compared \Vlth those for 

incorporating oleic acid into tristearin. For all parameters -;tudied. oleic acid incorporation 

was higher than that of capt)- lie acid. 

The production of SL by lipase-catalyzed reaction. at presenr. is a promising 

method that has not yet been optimized or investigated in detail. in particular for solvent

free systems. Shieh t't al. 1 19951 reported a four-factor response surface optimization of 

the enzymatic modification of triolein to Sl \.\lith hexane as ;1 solvent. Huang and Akoh 

1 1996al ;,t(so reported the optimization and scale-up of enzymatic syntht.:sts of SL using 

response surface methodology 1 RSM) in a similar system using ;1 non-specific enzyme. 

Xu t!t al. 1 1998a) also used response surface Jesign in order to optimize 

production of SL from rapeseed oil and capric acid in a solvent-free medium catalyzed by 

Lipozyme lM from Rhi:.omucor miehei. The effects of parameters such ;.lS reaction time. 

temperature and water content on acyl migration and the net incorporation of capric acid 

into rapeseed oil were studied. Xu er a/. 1 1998bl reported large scale synthesis and 
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proJu~o:tion 1 I kg anJ -W kg) 1Jf SL in batch reactors and noted the dfe~o:ts l)f a~.:y l 

migration lln the purity of SL. 

Huang . .md :\koh 1 1996b) reponed transesterifica[lon of tnolein and ~aprylil: acid 

~thvl ester in hexane using different lipases. Their results showed that an •mm,)bilizt:d 

lipase [yl60 from Rhi:omucor mit'lzei converted most of triolein 1nto SL 1-+ 1.7rc 

dicapryloolein. 46rc monocapryloolein and 12.Jq. unreacted triolein). Howen:r. lipase 

SP-+35 from Candida antarctica had a higher activity at a higher tt:mperature. The 

reaction ~:.Hal~zed by lipase SP-+35 yield~d 62ct dicapryloolein. 33 .5C7c monocapryloolein 

and -+.Sec unreacted triolem at 55'1C. Lee and .-\koh 1 19961 used Lipozyme ~~ 60 to 

synthesize a SL wJth EPA at specific positions from medium-chain T .-\Ci and EP.-\ ethyl 

ester and reported a very high specifictty of the enzyme. Shimada et a!. 11996 a.bl 

inn:stigated the production of SL ~.:onraining DHA or other essential fatty acids ;.md 

caprylic acid by immobilized Rhi::.opLts delemar lipase in a solvent-free system. The 

effects of water and other parameters were rese.u-ched and the absolute sn-1.3 specificity 

of the enzyme used was claimed. 

2.6 Low calorie structured lipids 

.-\nether area of interest in the field of SL is the synthesis of low-calorie T.-\G that 

are characterized by the presence of SCFA and/or ~ICFA and LCF.-\ into a single T.-\G 

structure. Interest in these types of SL stems from the fact that they contain 5-7 kcal/g 
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..:aloric \ alut! -:om pared with the 9 kcal/g of natural fats and oils because of the lower 

..:alori~ ..:ontent of SCFA compared to that of their long-chain counterparts. Reduced

calorie;: SL are intended for use in baking chips. coatings. dips. bakery and dairy products. 

or as ..:ocoa butter substitutes. Currently. such SL are produced by random chemtcal 

interesterification between a short-chain TAG 1 SCT) and LCT. typically a hydrogenated 

vegetable oil ..;uch as soybean or canol a oil t Smith t't al .. 1994 ). The most familiar cla..o.;ses 

of low-calorie fats are Caprenin o. Salatrim ~- and ~tCT preparations. The following 

st:ctJons will describe each of these products. 

2.6.1 Caprenin 

Caprenm is a reduced calorie SL contributing about 5 kcal/g compared to 9 kcal/g 

of conventional fats and oils l Akoh. 19971. lt has a defined o.;tructure of 

caprocaprylobehenin 1 c~ t>-C 1 n 0-C~~ 0 ) . [t is a TAG formed by esterification of glycerol 

\Vith the medium-chain saturated fatty acids caprylic acid (C80) and capric acid (C 100) 

and the very long-chain saturated fatty actd behenic acid tC1~ 0 ) . All of these fatty acids 

are derived from natural food sources. Caprylic and capric acids are obtained by 

fractionation of palm kernel and coconut oils. Behenic acid is produced from rapeseed oil 

t Finley et al .. 1997) and is also found in peanuts and marine oils. Behenic acid is poorly 

absorbed t Akoh. 1998) and the MCF A provide fewer calories than absorbable LCF A. It 

was originally produced by Procter and Gamble Company (Cincinnati. OH) from coconut 



and palm kernel oils fatty actds t Finley er a/ .. 1997 l. Ca.prenin has functional properties 

similar to cocoa butter and is intended to replace some of the cocoa butta in -.elected 

~onfe~tionery products t.-\koh. 1996bl. h is digested. absorbed. and metabolized by the 

-;arne pathway as other T .\G L\rtz and Hansen. 1996). US Food and Drug Administration 

t FDA 1 has received a Generally Recognised As Safe tGRAS) petition for caprenin for use 

in soft ~andv bars and in confectionery coatings for nuts. fruits and cookies t .-\koh. 

1996bl. 

2.6.2 Salatrim ( Benefat) 

Salatrim. similar to caprenin. is also a reduced calorie SL with a calori<.: content of 

5 kcallg. lt is composed of a mixture of SCFA ( C:! \)-Col 0 ) and LCFA 1 predominantly 

C 1 ~"' tSmith era/.. 1994l. The SCFA are chemically transesterified with vegetable oils 

such a:-. highly hydrogenated canola or soybean oil t Klemann et a/ .. 1994l. Again. the 

saturated stearic acid is said to be partially absorbed with the SCFA contributing little 

calories to the overall molecule. Salatrim was developed by ~abisco Foods Group t East 

Hanover. ~Jl tFinley era/ .. 1997) and is now marketed by Cultor Food Science t~ew 

York. ~y l under the brand name. Bene fat t Akoh. 1998 ). It has the taste. texture and 

functional properties of conventional fats and oils. It can be produced to have different 

mehing profiles by adjusting the amounts of SCFA and LCFA used in their chemical 

synthesis. One product in the market that contains Benefat is the reduced fat baking chips 



59 

introduced in 1995 b~ Hershey Food Corporation . Salatrim ha:-. the FD.-\ GR.-\S .;t;,Hus as 

of 199-+ t.-\koh. 1996bl and can ;1lso be used as a cocoa hurter substitute. Salatrim is 

intended for use in chocolate-rlavoured coatings. chips. caramel. fillings for confectionery 

and baked goods. peanut spreads. savoury dressings. dips and .;auces and in Jail'\ 

products i Kosmark. 19961. 

2.6.3 \ledium-chain triacylglycerols 1 ~ICT) 

\tedium-chain triacylglycerols 1 \ICTl \vere originally developed for therapeutic 

purposes to provide a source of energy for individuals with compromised gastroincestinal 

systems. \ICT have been used extensively in parenteral nutrition formubtions . \tCT are 

·muctured TAG composed of fatty acids with cham lengths between 8 and l 0 carbon 

atoms obtained from coconut oil. Caprylic and capric acids comprise more than 96C:C of 

the fatty acids in \ICT preparations. ~CT are readily hydrolyzed by digestive enzymes. 

and the fatty acid end products are rapidly absorbed into the bloodstream ( Babayan. 

197-h \ICFA are used as immediate sources of energy by the liver. ytelding fewer 

calories per gram than LCFA. The caloric value of \ICT preparation is 7 kcallg i Finley ec 

al.. 1997). 
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2. 7 Digestion and absorption of structured lipids 

The rnet<.lbolic advantages of SL ovcr sirnpk physical mixtures are likely Jue to 

th~ po .... ition . or stereospecificity. ,)f certain fatty acids on the g lycerol backbone . One 

th~ory i..; that SL with \ICFA in the sn-2 position of the T:\G mokcule are mnre slowly 

rcmo\eJ from circulation than if they are given as standard :'vlCT. This stt:reospec1ficity IS 

mainta1neJ by enhanced lymphatic absorpuon of :'vlCF.-\ in the sn-2 position 1)f c:ntt:rally 

administcreJ SL. which ha.s been :-;ho\1.-n in humans 1 Jensen t'l al.. llJXl) 1 and an1mals 

dcns~.:n and knsen. 1992\. The enhanced absorption is bc:lieveJ to be the result of the 

actton of pancreatic lipase which preferentially hydrolyzes fatty acid moieties from the 

m-1 and .m-3 positions of TAG. that are transported ~·ia the intestinal lymphatics to the 

systemic circulation. Further investigation is required to completely explain the 

nutritional dfect-, nf SL. 

SL ..:onraming medium-chain and long-chain essential fatty actds meet the 

nutritional needs of patients and those with special dietary requtrements. When medium 

chain fatty acids such as caproic 16:0l and capric 1 IO:Ol acids are consumed. they are not 

incorporated into the chylomicrons and are therefore not likely to be stored. but will be 

used for energy. They are readily oxidized in the liver and constitute a highly 

concentrated source of energy for premature babies and patients with fat malabsorption . 

In ·drro lipase digestions and absorption of isolated intestinal loop studies revealed that a 

SL containing :\<fCF.-\ (caprylic acid: 8:0) at the sn-1 and sn-3 positions and a LCF.-\ 1L-\ l 
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at the .m-2 po~ition is more rapidly hydrolyzed and effectively absorbed than a typical 

long-chain T.-\G dandacek eta/ .. \9871. Ikeda t!l a/. ( 199\ l have also confirmed that SL 

are well absorbed. 

Jensen et al. ( 1990\ were among the first to confirm that fatty acids in the sn-2 

position are preferentially absorbed. They administered a bolus or either SL or 

randomized oil to lymph-cannulated rats. The SL contained medium-chain fauy acids in 

the sn-1 and .m-3 positions of the TAG and LA in the sn-2 position whereas in the 

randomized oil the same fatty acids were distributed randomly between the three 

positions. Absorption of \-tCFA was the highest from a randomized oil in which 

approximately 33C7c medium-chain fatty acids were located in the sn-2 position. The 

absorption of LA was highest from SL where LA wao; 1 oc~ned in the sn-2 position. 

indicating that their intestinal absorption is affected by T.-\G structure and that the 

absorption is t:nhanced for fatty acids located in the .m-2 position. 

Christensen eta/. ( 1995 a.b l showed that SL with EPA and DHA. predominantly 

in the sn-2 position of the TAG. were a more readily absorbable source of EPA and DHA. 

Jensen er a/. ( 1995) suggested that the structure of dietary T.-\G affects the distribution 

between lymphatic and intestinal absorption of fats. The intravenous applications of SL 

were also examined by Hultin era/. ( 1994). 

In a randomized trial of preterm infants fed one of the three infant formulas. Lucas 

it al. ( 199Tl demonstrated that a synthetic SL ( Betapol ~) containing palmitic acid ( 16:0) 



prc!dominamly in the! sn-2 position t7-+CC 1 had a significant impact on palmitic acid 

absorption. r~duced the formation of insoluble calcium soaps in the intestine and 

impro\c::J ~akium absorption from the Jier. These findings suggested a potentially 

important role for such SL in prc::term infant formulas since they can mimic the 

sterc!oisomeric structure of those in human milk. 

\kKenna t!t a!. tl985t and Hubbard and \-lcKenna ( 1987) ob~erved c!nhanced 

absorption of LA in ~ystic fibrosis patients fed SL containing LCFA and MCFA. Work by 

Babayan and colleagues ! Bach and Babayan. 1982: ~ascioli et al.. 1987) have 

demonstrated that SL. ria both the enteral and parenteral route. can decrease infection and 

improvc:: survival by serving as a more efficient fuel and by producing fewer 

intlammatory and immunosuppressive eicosanoids when compared wtth conventional 

TAG. [nvestigators continue to pursue the potential clinical utility of SL emulsions. 

Whether the distinct metabolic advantages of SL outweigh the lower cost of a physical 

mixture of LCT and \-ICT remains to be determined. 

SL have been designed to modify their effective energy content while maintaining 

their taste. mouthfeel. and tlavour enhancement characteristics. The mixture of varying 

lengths of fatty acids affects the behaviour of the fat in the absorption and digestion 

process. thereby reducing the energy content. The Nabisco Foods Group (East Hanover. 

~J) and the Procter and Gamble company (Cincinnati. OH) have developed two such SL 

for commercial applications (Finley et al.. 1994a: Wardlaw et al.. 1995). Nabisco 



de\'eloped a lipid containing short-chain fatty acids t Salatrim J: Procter and Gamble made 

a SL predominantly with medium-chain fatty acids t Caprenin 1. as discussed earlier. Both 

of the~e SL contribute less energy than other T.-\G containing mainly long-chain fatty 

acids. ln addition. the saturated long-chain fatty acid components. namely stearic acid tin 

salatrim l and behenic acid tin caprenin 1 further reduce the dlecti ve energy of these SL 

t Finley t!C a!.. 1994a: Wardlaw er a/ .. 1995 ). Stearic acid is less absorbed as a fatty acid in 

the .m-1 or .m-3 position because of reduced solubility in the intestinal lumen t Finley t!t 

al .. 1994a). Behenic acid is a very-long-chain fatty ac id that is a solid at body temperature 

and poorly absorbed regardless of its position on the glycerol backbone 1 Wardlaw et al .. 

1995). 

Salatrim is a SL made from TAG containing short chain fatty actds 1e.g .. 

tributynn l and long-chain saturated TAG t e .g .. hydrogenated rapeseed 011 l. This product 

has the potential to substantially reduce the energy value of foods into which it is 

incorporated while still retaining desirable textural properties. ln a human clinical trial in 

which 17 individuals received a diet containing 22% of energy from Salatrim for 7 days. a 

metabolizable energy value of 4.9 kcallg and absorption of stearic acid ranging from 63 to 

70'k- were reported for this product (Finley et al .. l994b). 

~ordenstrom eta/. ( 1995) infused low t 0.38 g TAG/ kg body weight) and high t l 

g TAG/ kg body weight) equimolar doses of SL (Structolipid ! ) and LCFA ! lntralipid'~) 

for 6 h in eight healthy volunteers. The SL consisted of a mixture of LCT and MCT in a 



ratio of 6-l:36 by \veight 150:50 by mole basis l. The subjects served as their own ~ontrols . 

. -\fter SL infusion. plasma concentrations of the \lCFAILCFA ratio were similar to the 

mole ratio of the infused lipid emulsion. indicating that \'ICFA and LCF.-\ \vere released 

at the same time. 

~umerous experimental studies have reported that high levels 1)f \ICFA ..:ause 

to.'(ic dfects and -;hould therefore be avoided. Even during infusion of a physical mixture 

of \ICT!LCT. \ICFA are released into the bloodstream more rapidly than LCFA. 

resulting in high blood concentrations of \tiCFA. Due to the simultaneous generation of - - -
LCFA and ~tCFA. \1CFA should be provided more slowly with SL-contaming 

emulsions. In a preliminary study. Flaaten et al. < 1995) showed that the production of 

\'ICFA is significantly lower \vhen SL !Structolipid.!!J) is administered than when a 

\1CTILCT physical mixture is used. In addition. plasma fatty acid profiles during SL 

infusion \Vcre similar to the fatty acid composition of the infused emulsion 1 ~ordenstrom 

et ai .. 19951. 

2.8 :'\letabolism of structured lipids 

Early studies have shown that SL synthesized from a mixture of \ttCT and LCT 

conferred several unique advantages over simple physical mixtures of the same fatty 

acids. including the ability to improve nitrogen retention while preserving 

reticuloendothelial function ( Sorbrado et al.. 1985). The reason for this ts not entirely 



understood but may relate to a more rapid oxidation and ckarancc of the LCF.-\ 

components of the SL. 

The tn\·estigation of SL emulsions ha...; shown interesting propertit:s v.:ith regard to 

nitrogen metabolism and immune function in experim~"ntal animals. \-tendez er al. t 1992 l 

compared the effects of a SL <produced by interesterifying fish oil with \-lCF.-\ 1 with a 

physical mixture of tish oil and MCT and found that the SL impro\ed the nitrogen 

balance in mice. posstbly because of the modified absorption rates of SL. Their results 

also revealed that tumour growth rate was slowed in SL-fed mice with ..;ignificant 

increases in rates of tumour protein synthesis and tumour protein breakdown. 

In another study. Mok er al. < 1984 l studied the effects of various lipid sources on 

protein metabolism. The following fat sources were used: tal LCT. tbl \--lCT. tel 1: 1 

physical mixture of LCT and \--1CT. and td) SL t made from 40C7c LCT and 60C7c \-lCT) . 

.-\gain. rats receiving SL had gained more body weight and had significantly higher 

nitrogen retention and serum albumin concentrations. This study confirmed the benefits 

of SL over \'tCT and LCT. whether each lipid is given alone or as a physical mixture. 

Improved nitrogen balance. hepatic protein synthesis and decreased leucine oxtdation 

have been found when SL were given as a component of total parenteral nutrition to 

burned rats < Maiz era/ .. 198~ ). Hence. SL were shown to have unique properties that may 

be beneficial during critical illness; however. these findings could not be reproduced 



\vhen SL emulsions \\·ere gi\en as the -;ole nonprotein energy source during hypo~aloric 

feedings in septic animals 1 Yamazaki era/ .. 19841. 

De\-tichele era/. 1 1988l also studied rats that were burned >25-30c:-c of their body 

-.urface and were emerally fed a diet with .t09C of nonprotein e'lergy as fat. Four lipid 

sources \Vere used: !al LCT. !bl \-1CT. !Cl a SL of modi fied dairy fat t50c:-c butter oil. 

v.:hich ~..:ontained SCF:\. 35ac \1CT. and l5°r saftlower oil). and !dl another SL t64°c 

\-1CT. 36'1: saftlO\ver oil l. Both SL diets were shown to reduce postburn C;.ttabolism and 

resulted in a higher cumulative nitrogen balance. whereas the group given modified dairy 

fat showed a higher liver fractional synthetic rate and a higher whole-body protein 

synthetic rate than groups given either LCT or ~CT. Groups given SL and \-1CT had 

significantly higher albumin concentrations than groups given LCT. 

In a s1milar study. burned animals received fat as LCT. \-tCT. a physical mixture 

of ssq palm kernel and 15°c suntlower oil !43'iC \-1CT. 579C LCT). and a SL composed 

of 85 '1: palm kernel and 15C7c suntlower oil 1 12°c ~1CT. 7cc LCT. 81 q of the SL1. :\gain. 

the groups receiving SL and the physical mixture exhibited better nitrogen balance and an 

increased rate of protein synthesis. Higher serum albumin levels were ob-;erved in the SL 

and ~CT fed groups. Again. the SL appeared to better attenuate the protein catabolic 

effect after injury <DeMichele er al .. 1989). 

A SL with a high percentage of PVFA provided as fish oil has been shown to 

inhibit tumour growth while improving body weight and nitrogen retention in sarcoma-
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bearing rats 1 Ling et a/ .. 1991!. These -;tudies compared SL composed of \-lCT and fish 

oil 1 \Vith only enough LA to meet essential fatty acid requirements l with similar physical 

mixtures and lipid emulsions with excesstve amounts of LA. [n a similar study. Teo et ,z/. 

1 1989 l compared the effect of enteral feeding with LCT ( suntlower oil. which is rich in 

linoleic acid\ and with SL t609C \-lCT. -+0% fish oil). Burned rats were fed t"ia a 

gastrostomy tube: -+OCC nonprotein energy was obtained from one of the two fats. The SL 

fed group had a higher cumulative mtrogen balance and higher muscle and liver fractional 

-;ynthetic rates: metabolic rate was 7°c lower in the! SL group. The intluence on 

metabolism observed in this study ti .e .. reduced protein catabolism! was similar to that 

seen with other SL. However. the resultant reduced energy expenditure is unique to this 

SL and may be related to the ability of w3 PVFA to diminish the injury re-;ponse. 

The effect of various levels of a SL t made from \-ICT and fish oil l on protein and 

energy metabolism has also been investigated in t!nterally fed hypcrmetabolic rats 

t Gollaher eta/ .. 1993\. Rats were infused continuously with diets providing 100 kcal/ kg 

/day and 2 g amino acid nitrogen/ kg /day. The proponion of nonn itrogen calories as SL 

was varied: 0. 5. 15 or 30% fat. A 30% LCT diet was also provided as a control to 

compare the protein-sparing abilities of these two types of fat. ~itrogen e"<.cretion. plasma 

albumin. plasma TAG and whole-body and liver and muscle protein kinetics were 

determined after 3 days of feeding. Whole-body protein breakdown. tlux. and oxidation 

were similar in all groups. The 15% SL diet maximized whole-body protein synthesis. 



The li\er fractional ..;ynthetic rate ''-'a . .; ~ignificantly higher in animals receiving 5~ of 

their nonprotein calories as SL :\luscle fractional synthetic rate was unchanged. Plasma 

TAG \vere markedly elt:\'ated in the 30c1- SL-fed rats. The 30C7c SL diet maintained 

plasma albumin levels better than diets containing no fat. 59c SL or 30c7r. LCT. ~itrogen 

excretion was lower in animals receiving JQCc nonnitrogen calories as a SL than in those 

recei\'ing 30ac as LCT (Gallaher et al .. 19931. 

The dfects of a SL Captex 8100 tAbitec Corporation. Columbu..;. OH: produced 

by chemical interesterification of \-1CFA and LCFA l. on energy metabolism have been 

investigated in lean and obese zucker rats ( Akoh et a/.. 1998). Consumption of the SL 

diet resulted in increased energy expenditure or heat production in the obese rats. Thus. 

these results supported the idea that the Captex may be useful in limiting obesity. 

Kenler ec a/. ( 1996) conducted a randomized trial comparing safety. 

gastromtestinal tolerance. and clinical efficacy of feeding an enteral diet containing a SL 

(made from fish oil and MCT) versus an isonitrogenous. isocaloric f01mula ( Osmolite 

HN: Ross Laboratories. Columbus. OH) in patients undergoing major abdominal surgery 

for upper gastrointestinal malignancies. Patients receiving SL experienced no adverse 

side effects. significant incorporation of EPA in plasma and erythrocyte phospholipids. 

and 50% fewer gastrointestinal complications and infections than patients given Osmolite 

HN formula. These data strongly suggest improved liver and renal function during 

postoperative period in the SL fed group. The authors concluded that early enteral feeding 



with SL was safe and well tolerated. Th~!ir results suggest that the use of such a formula 

Juring the postoperative period reduces the number of infections and gastrointestinal 

complic.ltions and improves renal and liver function by modulation of urinary 

prostaglandin levels. Additional dinical trials should be undertaken to further assess the 

(linical benefits of this SL. 

\Vhen the SL caprocaprylobehenin 1 Caprenin 1 at -l0£7c of total c:1lories was fed to 

healthy men as formula diet for 6 Jays along with diets containing LCT 1 18: lw9 and 

18:2w6l or ~tCT <8 :0-IO:Ol. there was no effect on plasma cholesterol tSwift er 1.1/ .• 

19921. However. the HDL-cholesterol was reduced by 1-1-C!c by the SL. 150C by the ~lCT. 

but was unchanged by the LCT. Plasma TAG were increased by 429c by the ~tCT. but 

\\rere unaffected by either diets containing LCT or the SL 1 Swifter a/ .. 19l}2 1. 

Data from human studies. using intravenous admmtstration of SL. have been 

scarce so far. [n two preliminary studies SL administered intravenously have been shown 

to be safe and to have beneficial effects over conventional lipids given intravenously 

tSandstrom eta/ .. 1993: ~ordenstrom era/ .. 1995). Sandstrom et af. 119931 evaluated the 

safety and tolerance of SL emulsion 73403 1 Kabt Pharmacia Parenterals. Stockholm. 

Sweden). an inreresterified mixture of MCFA and LCFA in the same glyceryl moiety. 

administered to postoperative patients requiring total parenteral nutrition. ~o difference 

in safety and tolerance of the SL emulsion ( 73403 l compared with the standard LCT 

emulsion. which contained only LCFA in a TAG molecule (lntralipid ~ 20%. Kabi 
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Pharmacia Parenterals 1. \Vas observed. This study underscores the need for more -;tudies 

on metabolic efficiencies of SL in postoperative patients. There is also need for 

determining the optimum dosage of these lipids for specific treatments . .-\ review of the 

optimum lipid scurces in enteral and parenteral nutrition was published by Gottschlich 

( 1992). 

In a study in human patients after major surgery. Sandstrom era/. 1 1995\ for the 

first time observed that the provision of SL is associated with a higher whole-body lipid 

oxidation rate than LCT in metabolically stressed pa!ients. The lipid oxidation rate was 

-;ignitkantly higher with SL than with LCT. 

2.9 Structured lipids in disease prevention 

The w3 and w6 fatty acids. especially EPA. DHA and GLA. may be incorporated 

into SL to promote health and nutrition. These fatty acids have several health benefits to 

combat arthritis. thrombosis. cardiovascular disease. diabetes and cancer 1 Horrobin. 

1990: Vartak et a/ .. 1997 l. as explained below. 

2.9.1 Arthritis 

Arthritis is a chronic inflammatory disease in joints 1Das and Huang. 2000). 

Beneficial effects of diets high in w3 and w6 fatty acids have been reported in arthritic 

patients. However. EPA increased the incidence of collagen-induced arthritis in mice 
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1 Pricketl t'f at .. 198~ 1. In another s£Udy. arthritic patients ..;howt!d ..;ignificant improvement 

in morning stiffnt!ss and numbt!r of tender joints \Vht!n consuming EP.-\. suppkments 

compared to placebo in a double blinded. crossover -;tudy 1 Kremer t>T a/ .. 1987 1. 

2.9.2 Thrombosis 

Thrombosis is the formation of blood dots. Blood dotting invohes the clumping 

together of platelets into large aggregates and is triggered when endothelial cells lining 

the artery walls are damaged. (f the platelet membranes are rich in long chain w3 PCF A. 

formation of certain eicosanoids such as prostacyclin h and thromboune A~ is promoted. 

These do not tngger platelet aggregation as much as the correspondmg e1cosanoids. 

prostacyclin [~ and thromboxane A: that are formed from w6 PCFA. Therefore. long

chain w3 Pl'FA may help to reduce the tendency for blood to dot 1 Groom. 1993 ). 

2.9.3 Cardio,·ascular disease 

Interest in fish oils has stemmed from the observations made in the 1960's of the 

almost total absence of heart disease among Greenland Eskimos despite their 

consumption of a diet very high in fat and cholesterol (Bang and Dyerberg. 1972: Rice. 

1991). It was later found that the blood of Eskimos contained a high concentration of 

EPA and DHA from a diet rich in fish and seal meat (Bang and Dyerberg. 1972: Ahmad. 

1998 ). Recent work of Mori ec ai. ( 1997) suggests that w.3 intake from fish consumption 



..,.., 

in conJunction \Vith a low fat diet is most beneficial in terms of reducing cardiovascular 

disease!. 

Cardiova..-;cular disease is the leading cause of death in industrialized countries 

t ~ewton. 19961. Recent research indicates that the! long chain w3 PUFA. especially EPA 

and DHA. may be dfc!~tive in reducing the clinical risk of cardiovascular disease by 

tavourablv altering lipid and haemostatic factors such as bleeding time and platelet 

aggregation 1 Homstra. 1989: Cauy-Dagach and Valenzuela. 19961. Dietary 

supplementation of EPA. DHA and other w3 PL.FA has also been recommended to lower 

the risk of cardiovascular disease and to improve the overall health of humans. 

2.9.-' Diabetes 

In diabetic subjects. dietary supplementation of long-chain PUFA from fish oils 

has been studied more ex.tensively than that of other fatty acids. The two predominant 

PL.FA in fish oil are EPA and DHA. Possible effects of w3 fatty acids on individuals with 

diabetes have been studied. Recently. the development of insulin resistance in nonnaJ rats 

fed a high-fat. safflower oil. diet was found to be prevented by partial replacement of 

linoleic acid with EPA and DHA from fish oil !Storlien et al .. 1987). From human 

studies. it is clear that in diabetic subjects. w.3 fatty acids exert beneficial effects on lipid 

metabolism and may decrease the severity of cardiac disorder and hence lower the 

incidence of coronary artery disease ( Bhathena. 1992 ). 



~litsuyoshi era!. 1 1992l studit!d the effect ofSL 1synthestzt!d as C~.,-C 1 ,:-C~, , as 

an c;:nergy substrate after hepatic resection in diabetic rats. The lipid sourct!s used in this 

study were \lCT. LCT. a simple physical mi:'(ture of \1CT!LCT and SL. The blood 

kt!tone body ratio lacetoacetate/~-hydroxybutyratel and the cumulative excretion of 1 -!CO~ 

in e:\pired breath after [ 1-!C] giucose administration were significantly higher in the SL 

group than in the other groups. These findings suggest that SL may be a superior energy 

substrate w other T.-\G preparations during the critical period after hepatectomy in 

diabetic patients. 

2.9.5 Cancer 

A SL made from fish oil and medium-chain TAG was found to decrease tumour 

growth in mice 1 Ling et at .. 1991). In another study. the tumour growth rate was slowed 

in rats fed with SL containing medium-chain fatty acids and fish oil 1 Mendez et al .. 

1992 l. In contrast to tumour-promoting effects of diets high in fat. diets high in fish oil 

fJ.iled to promote the development of tumours in rats <Braden and Carroll. 1986l. Reddy 

and ~laruyama ( 1986) also pointed out that diets containing high levels of fish oil inhibit 

or suppress tumour growth in animal models. Dietary intake of fish oils was effective in 

destroying some cancer cells. but it is not known whether such results are reproducible 

with humans. or what potential side effects might exist (Haumann. l997bL It is known 

that Ul3 fatty acids play an important role in the growth of certain cells in the human body. 



but the mechanisms involved in their effect on cancer treatment rematns -;omev•hat 

elusive. 

Impact: 1 produced by ~ovartis ~utrition. \-linneapolis. \-1~ l is a medical product 

LOntaming SL. It i-.; produced by interesterifying high-lauric oil \Vith high-linoleic acid oil. 

This product is used for patients suffering from trauma or surgery. ~epsts 1Jr .::ancer 

1 Haumann. l997a l. 

2.10 Structural analysis of oils 

If the TAG ha..-; two different fatty acids esterified to the primary hydroxyl groups 

of glycerol then the molecule is optically active. In order to specify the position of the 

fatty acid on the glyceryl moiety . stereospecific numbering (snl is used. In an optically 

active molecule dri.lv.·n in the Fischer projection with the secondary hydroxyl group to left 

of the middle carbon atom ( sn-2 l. the carbon atom above this is sn-1 and the one below it 

is sn-3 (Laakso. 1996). 

The structure of TAG molecule has an impact on its nutritional and biochemical 

properties. Intestinal absorption of fatty acids has been reported to be dependent on their 

arrangement in the TAG molecules. investigation of the absorption of fauy acids in a 

canine model suggested that the positional distribution of fatty acids within the TAG 

molecules might affect the metabolic fate of fatty acids (Jensen et al.. 1994 ). During 

digestion. lipases hydrolyze TAG into FFA. predominantly from the sn-1 and sn-3 



positions and 2-MAG 1 :\-lattson and Volpenhein . 19621 \Vhich \\.' ill be absorbed into the 

intestinal mucosal cells of the small intestine. Although most dietary lipids are in TAG 

form. rdati\dy little is known about the importance of stereospecific composition of 

TAG on the biological activity of dietary fatty acids 1Kubow. 19'J6L During the 

biosynthesi~ of TAG. all glycerol positions are known to be important. The major routes 

of T.\G synthesis include sn-glycerol-3-phosphate. dihydroxyacetone phosphate and 

:\-lAG path\'.·ays 1 Laakso. 1996 ). In most cases. the sn-3 position is the last to be esterified 

1 Laakso. 19961. Differences in the positional distribution of fatty ac1ds have also been 

shown to have -;pecitic effects on the profile. structure and (Omposition of lipoproteins 

1 Kubow. 19961. 

2.10.1 Stereospecific analysis of triacylglycerols I TAG) of oils 

Stereospecific analysis determines how the fatty ;.1e1ds of TAG are distributed over 

the three different positions of the glycerol t Brockerhoff. 1971 1. Differences m the 

distributions of fatty acids among the positions of the glyceryl moiety in TAG from natural 

fats and oils were first demonstrated systematically by enzymatic hydrolysis procedures. 

especially pancreatic lipase hydrolysis for the analysis of the fatty acids of position sn-2. 

before complex stereospecific hydrolysis procedures were developed that permitted 

complete positional distributions of fatty acids to be determined. Because of this historical 

development of the analytical procedures. there has been a tendency to assume that the 

composition of fatty acids esterified to the sole secondary hydroxyl group must have greater 



importanc~ than thosl! of the two primary positions. It is certainly true that the composition 

of position sn-2 is of great importance \\·hen TAG are consum~J and Jigestt!J by animals. 

since sn-.2-:'vl:\G are then fanned which can be absorbed by the intestines and utilized as 

such 1 Carey er a! .. 19831. On the other hand. the results of stereospecific ;.malyses have 

shown that the compositions of all three positions in certain fats can be distinctive and can 

highlight important aspects of the biosynthetic processes. Position sn-3 . for example. 1s the 

last position to be acylat~d during TAG biosynthesis I Laakso. 1996) and th is step is 

potentially important in the cellular control mechanism. 

Positional Jistribution of fatty acids in TAG can also be determined either by high

resolution 1 :C nudear magnetic resonance ! 
1 1C ~MRl spectroscopy 1 :\ursand er ,z! .. 1995; 

Bergan a and Lee. 1996, on the basis of the chemical shift of esteritied fatty acids in all three 

positions. and by HPLC of the diastereomeric derivatives l urethane) of panial acylglycerols 

! Redden era/ .. 1995: \'lyher er al.. 1996). 

.-\s previously discussed. the differentiation of fatty acids between pnmary and 

secondary positions might be essential from a nutritional point of view. The methods for 

complete stereospecific analysis of TAG are almost always based on the formation and 

separation of DAG. The traditional methods include phosphorylation o f DAG and their 

hydrolysis with phospholipases (8rockerhoff. 1965). :\'lore recently. however. methods for 

separation of enantiomeric acylglycerols have been developed !Takagi and Itabashi. 1986. 

1987: Takagi and Ando. 1990). There are two main ways to separate enamiomers. First. by 
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reaction with an achiral reagent: ~nantiomers form enantiomeric derivatives that may be 

s~parated by a chiral sta[lonary pha.se. Reaction v.;ith a chiral reagent may also be carried 

out. upon which enantiomers form diastereomeric derivatives that are separated by achiral 

stationary phases 1 Takagi. 1990 I. 

The traditional methods of stereospecitic analysis were pioneered by Brockerhoff 

1 19651. The first step was partial deacylation of TAG with pancreatic lipase or Grignard 

reagent. Currently. Grignard reaction is preferred because it has no fatty acid speciticity and 

causes less acyl migration than other available methods. Since Grignard reagent reacts in a 

random manner with ~ster linkages. s11-1.2 DAG. sn-1.3 DAG. ~AG and tertiary alcohols 

are produced. 

The sn- 1.2 DAG can be separated from the sn-1.3 DAG and other fractions by TLC 

1 Wana..-.undara and Shahidi. 1997). These enantiomeric acylglycerols can also be separated 

by HPLC using silica gel as the stationary phase (Damiani er a/ .. 1994) or using a chiral 

column !ltabashi er af.. 1993). The purified DAG are then phosphorylated to their 

phosphatidylphenols by reacting with phenyldichlorophosphate. The fatty acid in the sn-2 

position is hydrolyzed using phospholipase A2 leaving a lysophosphatidylglycerol with the 

fatty acid in position sn-1 and unreacted sn-2.3-DAG phosphatidy1glycerol. The fatty ac1d 

composition of position sn-l of TAG can therefore be determined from either the FF A or 

from 2-MAG. The fatty acid composition of sn-1 is determined by analysis of 

lysophosphatidylphenols and sn-3 is determined indirectly by calculation (Laakso. 1996). 



The determination of fatty acyl residues esterified to the primary and secondary 

hydrm.yl groups of TAG is most often accomplished with pancreatic lipase. The 

composition of position sn-2 of TAG can be determined by reacting them with the enzyme 

pancreatic lipase. the properties of which have been reviewed by Brockerhoff and Jensen 

' 197-' l. and Verger { 198-' l. How·ever. the pancreatic lipase technique does not distinguish 

bet\l.een sn-1 and .m-3 positions of TAG. 

2.10.2 Positional distributions of fatty acids in plant oils 

In general. seed oils containing common fatty acids show preferential placement 

of unsaturated fatty acids at the sn-2 position 1 Arcos et al .. 2000). Linoleic acid is 

especially concentrated at this position. The saturated fatty acids occur almost exclusively 

at the .m-1.3 positions. In most cases . the individual saturated or unsaturated fatty actds 

are distributed in approximately equal quantities between the sn-1 and sn-3 positions. For 

example. tn maize. soybean. linseed. olive and wheat germ oils. the sn-2 position is 

almost e:~clusively occupied by unsaturated fatty acids. while saturated as well as 

unsaturated fatty acids occur in approximately similar quantities in positions I and 3 

1 Brockerhoff and Yurkowski. 1966: Arunga and Morrison. 1971 ). 

The more saturated fatty acids of plant origin show a different distribution pattern. 

Approximately 80% of the TAG in cocoa butter are disaturated with oleic acid 

concentrated in the sn-2 position and saturated fatty acids almost exclusively located in 
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th~ sn-1 and sn-3 positions . Th~re is appro:<imately 2 times more oleic in the sn-1 than in 

the sn-2 position c Takagi and .-\ndo. 1995 l. Approximately 8~0C of the TAG in coconut oil 

are trisaturated 'Young. 1983 l with lauric acid concentrated at the str-2 position. caprylic 

acid at the .m-3. and myristic and palmitic acids at the .m-1 position. Plant oils contain ing 

erucic acid\ 22: I w9l also exhibit considerable posl(ional sdecuvity in the placement of fatty 

acids. ln rapeseed oil. much greater quantities of erucic acid arc preferentially located at the 

m-1.3 positions. but more of it is present at the sl!-3 position than at the sn-1 position 

( Brockerhoff and Yurkowski. 1966l. ln peanut oil. arachidic ( 20:0) and behenic t22:0) acids 

are found mainly in position sn-3. while t\vice as much LA is esterified to position sn-1 

compared to position sn-3 ( ~yher et al.. 1977). 

2.11 Concentration of highly unsaturated fatty acids from oils 

Several techniques have been explored for the concentrauon of Pl"F.-\ from various 

oils. ~lethods traditionally employed for the concentration of Pl"FA in oils make use of 

differences in physical and chemical properties between saturated and unsaturated fatty 

acids. For example. the melting points of fatty acids are dependent on their degree of 

unsaturation. EPA and DHA melt at -5~ and -44.5°C compared to 13 .~ and and 69.6"C for 

18:1 and 18:0. respectively (Merck Index. 1983) . .-\s the temperature of a mixture of a 

saturated and unsaturated fatty acid decreases. the saturated fatty acid. having a higher 

melting point. stans to crystallise out first and the liquid phase becomes enriched in the 
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unsaturated Lmy acids. Howevc:r. as the number and type of fatty acid components in the 

mixture increa..-;es. the crystallisation proct!ss becomes more complex. and repeated 

crystallisation and separation of fractions must be carried out to obtain purified fractions. In 

the ca..-;e of marine oils. not only is there a very wide spectrum of fatty acids bur the fatty 

acids exist. not in the FF.-\ form. but esterified in TAG. However. the principle of low 

temperature crystallisation can still be applied to marine oils partially to concentrate TAG 

rich in w3 PL"F.-\ 1 Shahidi and Wanasundara. 1998a). 

The readiness of straight-chain saturated fatty acids to form inclusion complexes 

wtth urea in comparison with PCF.-\ is well established and conventional urea complexation 

techniques using ethanol or methanol as a solvent can be appl ied to the fatty acids of oils or 

their methyl or ethyl esters to produce a fraction rich m PCFA. L"rea complex formation of 

fatty acids has been extensively used for enriching fish oils in w3 PL.FA 1 Ratnayake er al .. 

1988: Breivik er al .. 1997: Hayes er al .. 2000). L"rea complexation of fatty acids of borage 

oil. using methanol. can increa..-;e the GLA cement from 23.6 to 94C:c 1 Huang er al .. 1999). 

Haagsma er dl. 1 1982l described a urea complexation method for enriching the EPA and 

DHA levels of cod liver oil from 12 to 28 and 11 to 45%. respectively. 

Supercritical tluid extraction is a relatively novel technique which has found use in 

the food and pharmaceutical applications. The process makes use of the fact that at a 

combined temperature and pressure above a critical point. a gas such as C01 has a liquid

like density and possesses a high solvation capacity l Shahidi and W anasundara. l998a). 
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This m(!thod is mild and. because it uses CO:. minimizes autoxidation . lt separates fatty 

acids most dfecttvely on the basis of chain length: hence the method works best for oils 

with lmv levels of long-chain fatty acids. Fish oils in the form of free fatty acids and fatty 

acid esters have been extracted with supercritical gaseous CO:! to yield concentrates of EPA 

and DHA. 

For the concentration of PCFA on a large scale. each of the above physical and 

chemical separation methods has some disadvantages either in terms of low yield. a 

requirement for large volumes of solvent or sophisticated equipment. a tisk of structural 

changes in the fatty acid product. or high operational costs. Lipases work under mild 

conditions of temperature and pH !Gandhi. 1997). a factor which favours their potential use 

for the enrichment of PliF A in oils. Lipases which act on neutral lipids generally hydrolyze 

the esters of PL.FA at a slower rate than those of more saturated fatty acids !Villeneuve and 

Foglia. 19971. L:se has been made of this relative substrate specificity to increase the 

concentration of ro3 PCF A in seal blubber and menhaden oils by subjecting them to 

hydrolysis by a number of microbial lipases (Wanasundara and Shahidi. 1998). 

2.12 Oxidative stability of oils containing highly unsaturated fatty acids 

The oxidation of unsaturated lipids of foods has been one of the most extensively 

studied areas of research in food science and nutrition as it relates to the deterioration of 

foods. ~umerous chemical and biochemical reactions affect the quality attributes (colour, 



odour. tlavour. texture,_ nutritional value and safety of food components and none 

epitomizes this more than the oxidation of unsaturated fatty ;1cids 1 Hsil!h and Kinsella. 

1989l. Oxidation of unsaturated fats and oils is a major concern because it 1s directly related 

to cost. nutrition. tlavour. safety and storage of products. 

Oxidation of food lipids may proceed via enzymatic oxidation. photooxidation. 

autoxidation and thermal oxidation. Since enzymes are liable to heat denatur:ltion. 

lipoxygenase activity is normally absent in a refined oil. Therefore. ox1dation catalyzed by 

enzymes does not create a problem in the storage and use of fats and oils. Formation of 

hydroperoxides from unsaturated fatty acids by photooxidation involves the generation of 

highly reactive 'inglet oxygen. Autoxidation is the process of oxidation induced by air. 

Oxidative reactions of lipids are greatly accelerated at higher temperatures. The oxidation of 

lipids at higher temperatures is referred to as thermal oxidation. 

Lipid (>Xldation IS due to a combination of triplet o:<ygen and smglet oxygen 

reactions 1 Ho and Chen. 1994 ). Triplet oxygen lipid oxidation has been extensively studied 

in the 20th century in order to improve o:<.idative stability of foods 1Labuza. 1971). 

However. it does not fully explain the initiation step of lipid oxidation (Lee and ~in. 1990). 

Rawls and VanSanten ( 1970) suggested that singlet oxygen is involved in the initiation of 

lipid oxidation because singlet oxygen can react directly with double bonds of fatty acids 

without the formation of free radicals. 



2.12.1 Chemistr~· and mechanism of autoxidation 

One of the primary pathways of lipid degradation is that af autoxidation . 

.-\ulOxidation af unsaturated fany acids occurs via a free-radical mechanism i Crapiste eta/ .. 

1999t in \~hich o."<.ygen is added to the unsaturated fatty acid chains of lipid molecules. 

:\utoxidation involves initiation. propagation and termination steps i Figure 2.7 1. These 

processes often consist of a complex series uf reactions. The initiation process may occur 

Jue to the abstraction of a hydrogen atom adjacent to the double bond in a fatty acid 1 RH l 

and a free radical 1 R•t is formed. The formation of free radicals in this step is c:.Halyzed by 

light. heat. high energy radiation. metal catalysts. metalloporphyrins 1 haem> ;md ather 

radical compounds 1 Hamilton. 1994). The resultant alkyl free radical ' R•l reacts with 

atmospheric u.'<ygen to form an unstable peroxy free radical 1 Roo• t which in turn abstracts 

a hydrogen atom from another unsaturated fatty acid to form a hydropero.'<ide 1 ROOH) and 

another free radical. R· . This reaction is referred to as propagation. The fret: radicals formed 

can initiate and promote o . .'<idation of large amounts of lipid (Porter et a/ .. 1995 t. The free 

radical chain reaction may be terminated by self-quenching or polymerization of free 

radicals to form non-radical products fRR. ROOR. etc. l or by antioxidants which react 

completely with alkyl free radicals and/or peroxy radicals and remove them from the system 

1 King et aL 1995). 



Figure 2. 7 Generalized scheme for autoxidation of lipids 
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2.12.2 Decomposition of hydroperoxides 

Hydroperoxides 1 or primary oxidmion products l do not have any off-tlavour or off

odour. Howe\·er. they are \·cry unstable and regardless of the mechanism of formation. they 

are decomposed further to ~econdary oxidation products. Depending on the mode of this 

reaction. the products so formed may be carbonyl compounds (i.e .. aldehydes and ketonesl. 

alcohols. esters or hydrocarbons which are believed to be responsible for the development 

of off-tlavour and oxidative rancidity in foods lFigure 2.8). The aldehydes. which are 

powerful tlavour compounds with very low tlavour thresholds. are to a large extent 

responsible for the rancid tlavour of fats and oils. The decomposition of hydroperoxides 

occurs \·ia homolytic cleavage of the oxygen-oxygen bond to yield hydroxyl and alkoxy free 

radicals. The alkoxy radical can then undergo cleavage to form an aldehyde and a new free 

radical. This reaction involves carbon-carbon bond scission which can occur on either side 

of the radical. The aldehyde \..,·hich is formed due to scission. can either be a shan-chain 

volatile compound or it can remain attached to the acylglycerol part of the molecule as a 

non-volatile product. Abstraction of a hydrogen atom from another molecule can yield an 

alcohol and a new free radical. Free radicals formed during these reactions may participate 

in propagation of the chain reactions while interaction of two free radicals can yield non

radical products and thus. terminate the chain reaction. leading to the formation of ketones. 



Figure 2.8 Decomposition of hydroperoxides and subsequent termination of chain 
reactions 
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2.12.3 Autoxidation of fatty acids 

Th~ rat~ of amoxidation of fauy acids depends greatly on th~ degree of unsaturation. 

In general. the rate of oxidation increases rapidly with greater unsaturation in the fatty acid 

m01ety of the TAG. For example. the re lative rate of autoxidation of o leate. linoleate and 

linolenate wa.-; reponed to be in the order of 1:40-50: 100 on the basis of oxygen uptake and 

in the order of I: 1.2:25 on the ba.-;is of peroxide formation 1 Hsieh and Kinsella. 1989). 

Possible autoxidation products of oleic. linoleic 1 l:\l and a-linolenic 1 ALAl acids 

are shm.,·n in Figures 2.9 . 2.10 and 2.11. respectively. Autoxidation of olt.!ic acid involves 

hydrogen abstraction from carbon-8 and carbon- 1 1 with formation of two atlylic radicals 

tFigure 2.9 >. These intermediates react with oxygen to produce a mixture of 8-. 9-. 10- and 

I 1 -ally lie hydropero:-<ides 1 Frankel. 1 985). Hydrogen abstraction on the double allylic 

carbon-It of LA produces a pentadienyl radical 1 Ho and Chen. 1994 l which reacts at both 

ends \\ ith nxygen to produce a mi:~.ture of conjugated 9- and 13-diene hydroperox. ides 

tFigure 2.10l !Frankel ~cal .. 198:!). Hydrogen abstraction of the .. ~LA occurs on the two 

active methylenes on carbon- II and carbon- 14 and produces two pentadienyl radicals which 

react with oxygen at the end carbon to form a mi:-<ture of conjugated diene-triene 9-. 12-. 

13- and 16-hydroperox.ides 1 Figure 2.1 1) I Chan and Levett. 1977). 



Figure 1.9 Mechanism of autoxidation of oleic acid and formation of possible 
primary and secondary products 
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Figure 2.10 ~echanism of autoxidation of linoleic acid and formation of possible 
primary and secondary products 
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Figure 2.1 1 

90 

Mechanism of autoxidation of a-linolenic acid and formation of possible 
primary and secondary products 
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Linoleic :..lCid O:'(idizes much faster than oleic acid (Rossell. 19911 because it has an 

acti\·e his-allylic methylene group on carbon- II that can lose a hydrogen atom \'t:ry easily. 

The greater reacti\'ity of LA to autoxidation is due to the formation of a pentadienyl radical 

intermediate which is more dfeCU\ely stabilized by resonance. and the resulting Jienoic 

hydroperoxides produced are stabilized by conjugation 1 Frankel. 1998a 1. ALA ha..-.; t\1,0 his

allylic methylene groups and reacts twice as fast with oxygen a...;; does LA. 

PL"FA such as AA. EPA and DHA. containing ~.5 and 6 double bonds. respectively. 

are much more liable to oxidation than linoleic and linolenic acids 1 Hsieh and Kinsella. 

1989 l. AA was reported to oxidize 2.9 times faster than LA (Porter er al.. 19811. Hydrogen 

abstraction at the doublc ally lie carbon-7. carbon-! 0. and carbon-13 positions of AA 

produces three pentadienyl radicals. which then react with oxygen at the t:nd-carbons. 

carbon-5 and carbon-9. carbon-8 and carbon-12. as well as carbon-\ I and carbon-15. 

respecti\'t:ly 1 T erao and ~atsushita. 1981 l. 

.-\s the number of double bonds increases in Pl:F A. they produce more complex 

mixtures of hydroperox.ides which are easily decomposed and become very difticult to 

analyse quantitatively. The most important w3 PUFA found in fish and marine oils include 

EPA and DHA. The hydroperox.ides produced from EPA and DHA have been identitied but 

not quantified <Frankel. 1998aJ. By the same mcchanism established for linolenic acid. EPA 

produced 5-. 8-. 9-. 11 -. 12-. 1~-. 15- and 18-hydroperoxides !Figure 2.12) !Yamaguchi er 
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Figure 2.1.2 \1echanism of autoxidation of eicosapentaenoic acid <EPA) and formation 
of possible primary and secondary products 
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a/ .. 19851 v.·hile DHA produces~-. 7-. 8-. I 0-. I 1-. 13-. 1-l-. 16-. 17- and 20-hydroperoxides 

(Van Rollins and \lurphy. 198-ll. 

2.12.-l Autoxidation versus photooxidation 

The reaction mechanism and reactivity rates of autoxidation are different from those 

of photooxidation. Therefore. autoxidation of unsaturated fatty acids produces different 

hydroperoxides from those formed by photooxidation. In the autoxidation. the initiation 

stage. represented by the lag phase of a measured reaction. includes the formation of the 

first hydroperoxides. The ensuing propagation phase involves the breakdown of these 

hydroperoxides to form free radicals which further generate their own formation in an 

autocatalytic chain reaction. The initiation stage of autoxidation has been considered to be 

of principal importance in determining the onset of rancidity in lipid containing foods 

( Labuza. 19711. because it is during the early stages of autoxidation that small molecular 

weight compounds causing off-flavours are formed. 

ln the photooxidation of lipids. the reaction is apparently not autocatalytic. The 

quantity of hydroperoxides formed is proportional to the total amount of light absorbed. 

Furthermore. in contrast to autoxidation. the hydroperoxides formed during photooxidation 

may be non-conjugated (Terao and Matsushita. 1977). As hydroperox.ides are formed. they 

undergo further oxidation by light to form free radicals (Neff eta/ .. 1983 ), yet this does not 

gtve autocatalytic character to photooxidation. Pigments present in foods such as 



~hlorophyll. porphyrins and ribotla\·in t L. suki t't a/.. 19841 may act a.-. photooxidation 

sensitizers by transferring their absorbed light energy w either molecular oxygen or a 

substrate !lipid l which then becomes a reacti\·e intermediate. If an excited sensitizer reacts 

with molecular oxygen 1 relatively unreactive in its ground triplet state l. singlet oxygen may 

be formed. Singlet oxygen is a reactive intermediate in the photooxidation of lipids and 

further. its participation as the primary source for the original hydroperoxide formation in 

the initiation of fatty acid autoxidation ha.-; been suggested I Rawls and Van Santen. 1970l. 

2.13 :\lethodologies for assessing lipid oxidation 

Lipid oxidation can be measured by objective and subjective methods. Although 

widely used. subjective methods of assessing the oxidative stability of prepared foods are 

time ~onsuming. and taste panels are difficult to maintain. Several techniques for measuring 

the extent of lipid oxidation has been extensively reviewed recently 1 Gray. 1978: Hoyland 

and Taylor. 1991: Frankel. 1993a: Shahidi and Wanasundara. 1996). These include 

~onjugated dienes. P'!roxide value. TBA test. measurement of volatile carbonyl ~ompounds. 

nuclear magnetic resonance 1 NMR) and fourier tans form infrared 1 FTIR) methods. 

Most of the analytical methods to follow lipid oxidation have limitations which will 

be discussed in the following sections. Furthermore. the methodologies used to evaluate 

oxidative stability of edible oils must be carefully interpreted based on the analytical 

procedure used to determine the extent and the end point of the oxidation. Therefore. it is 
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recommended that progress of oxidation be followed by more than one method by 

measuring different types of products. including primary and secondary products of lipid 

oxidation 1 Shahidi and Wana..•mndara. 19961. It is also possible to determine the extent to 

v.;hich the various methods agree with one another using carefully controlled model 

systems. This can be achieved by calculating the correlation coefficients 1 Hudson and 

Gordon. 19941 or bv employing linear regression analysis 1 Shahidi and Wanasundara. 

19961. The followmg sections will focus on widely used methods and analytical techn1ques 

t!mployed for assessing lipid oxidation. 

2.13.1 Conjugated dienes 

Oxidation of Pl'FA is accompanied by an increase m the ultraviolet absorption of 

the product. Lipids containing methylene-interrupted dienes or polyenes show a shift in 

their double-bond position during oxidation that is due to isomerization and conjugate 

formation 1 Logani and Davies. 1980). The resulting conjugated dienes can be determined 

quantitatively by their strong absorption maximum 1 Ama.d at 234 nm: similarly conjugated 

trienes can be determined by their absorption ma"<imum 1 Ama.x) at 268 nm. A weighed oil is 

diluted in isooctane and the absorbance at 234 nm measured spectrophotometrically. 

Edible oil oxidation has been followed by measuring the absorbance at 234 nm by 

the ICPAC method 1IUPAC. 1987) or by calculating the conjugated dienes as mmol of 

methyl linoleate hydroperoxide per kg of oil using molar absorptivity of 26.000. The 



presence of moh!cules containing double bonds. such as carotenoids that can absorb 

ultra\iolet light at .234 nm. may interfere with CD determination 1 Shahidi and 

\\' •masundara. !998b l. Howe\er. this method IS faster than the peroxide \·alue 

determination. is much simpler. does not depend on chemical or colour reactions. and 

requires a smaller sample size. 

2.13.2 Peroxide value 1 PV) 

The perox1de value is the result of chemical analysis of the hydroperoxide content of 

the oil. This is one of the most commonly used methods for measuring oxidative stability of 

oils and food lipids. The primary products of lipid oxidation are hydroperoxides which are 

generally referred to as peroxides. Therefore. it seems reasonable ro determine the content 

of peroxides as a me:.1..o.;ure of the extent of lipid oxidation. 

The various procedures available for determining peroxide value are highly 

empirical and their accuracy depends on standardization of the experimental conditions. 

~ethods based on iodometric titration are most commonly employed. The content of 

hydroperoxides can be determined quantitatively by means of an iodometric titration and 

expressed as PV. The determination of PV is based on the reduction of hydroperoxides 

lROOH) with iodide 1n. The liberated iodine is titrated with a standardized sodium 

thiosulphate (Na~S~03 ) solution. Therefore. the amount of released iodine is proportional to 
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that of peroxides present. The peroxide \·alue is expressed as milliequivalents of active 

L'X~gen 1 i.e .. peroxide! per kg of lipid 1 meq!kgl. 

Errors in the iodometric procedures have been auributed to addition of iodine to 

double bonds of unsaturated fauy acids and liberation of iodine by air oxidation of the 

iodide. The result is also affected by the structure and reactivity of the peroxides and the 

rea~.:tion temperature and time. However. iodometric.: titration method in Section Cd 8-53 of 

the AOCS 1 19901 diminates most of these problems and is the method recommended by 

the author. 

[n practice. often only the PY is measured. but this can be misleading. It can be seen 

that 1 aJ a low PY muy be the result of fast breakdown of hydroperoxides rather than slow 

formation and 1 b 1 a high PV during processing is not good. but the effect on final taste and 

stability may be limited by selective breakdown to secondary products with less taste 

impact. Another problem with the PV is the need for careful sampling and handling. 

The PV is a valuable measure of the early stages of lipid oxidation occurring at 

ambient temperatures 1Shen er al .. 1999). However. it is less useful in assessing frying oils 

wherein peroxides decompose rapidly at typical frying temperatures ( 170-250°C) (Robards 

I! I a!.. 1988 ). 

Other reactions based on the reduction of hydroperoxides have been utilized for 

analytical purposes but are less popular at present. Thus. a spectrophotometric method 
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ba....;ed on the peroxide oxidation of Fe!> to Fe·;_ and determination of the IJ.tter a....; the! Fe! ' -

triiodidt! complex ha..o.; been proposed 1 Lov:1as. 19921. 

Good correlations have been observed between PV and sensory -.cores l)t ..;e\eral 

vegetable oils 1 Frankel. 1993aJ. ~onetheless. oils with low PV value ha\·e not alv .. ays 

received high tlavour scores. Therefore. it has been recommended that additional anal~tical 

methods be used to assess the stability of edible oils 1 King eta/ .. 1995). 

2.13 .. 3 Thiobarbituric acid (T8A) test 

The 2-thiobarbituric acid 1TBA1 test is a convenient method for measurement of the 

content of ..;econdary oxidation products. referred to as TBA reactive substances ITBARS). 

This method is fre4uemly used for quantitation of lipid oxidation in foods. One of the 

carbonyl decomposition products of lipids in foods ts malonaldehyde 1 ~tAl. which ts a 

three-carbon dialdehyde 1 Pearson era/ .. 1983 ). ~A is an important aldehyde resulting from 

I ipid oxidation of unsaturated fatty acids with three or more double bonds 1 ~elton. 1983 ). 

The content of ~A and other TBARS in products may be assessed by first isolating and 

then reacting them with the TBA reagent. During the TBA test. one molecule of ~tA reacts 

with two molecules of TBA at high temperatures to form a pink-coloured "TBA-MA 

adduct' 1 Figure 2.13 ). The absorption intensity of this coloured chromogen is measured at 

532 nm. 
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Figure 2. 13 Steps involved in the formation of thiobarbituric acid-malonaJdehyde 
tTBA-MA) adduct 



OH 

0 0 

II II 
H - C - CH2 - C- H 

~ N 

~N~SH + 

HO 

2· Thiobarbituric acid (TBA) Malonaldehyde (MA) 

0 

H 

0 OH 

H 

TBA·MA adduct 



100 

.-\ major disadvantage of the TBA tt!st is that \-lA is only formed by fatty acids 

\vhich wntain thret! or more double bonds 1 Benzie. 19961. Contents of Nher products of 

lipid oxtJation -;uL:h J.s pentane. n-propanal. n-hexanal. etc. may also be determined and 

related to the degree of autoxidation in foods. Funhermore. the accuracy of TBA test has 

been questioned due to the reaction of TBA \\.·ith other molecules such as sugars and 

oxidized proteins 1Rossell. 1994). However. these products are normally not present in 

edibk oils. thus TBA may be used to assess their o."<.idation 1 Ganthavom and Hughes. 

19971. The TBA test is unsuitable for following lipid oxidation in some .;helf life studies 

where TBA values increase and then decrease while -;ensory analysis shows a steady 

increase 1 Hoyland and Taylor. 1991 ). \-teanwhile. other substances such as 2-alkenals and 

2.4-alkadienals present in edible oil. give a positive test wnh the TBA reagent and 

~ontribute to the absorption intensity at 532 nm which may retlect the total amount of 

aldehydes present rather than that of :\lA alone (Rossell. 1994 l. However. despite its 

limitations. the TBA test is frequently used to measure lipid oxidation in foods. especially 

on a comparative basis. 

2.13.-1 .-\nisidine value 

The anisidine value is empirically detined as 100 times the absorbance of a solution 

resulting from the reaction of I g of oil or fat in 100 mL of a mixture of solvent and p

anisidine. measured at 350 nm in a !-em cell under the conditions of the test ( AOCS. 1990). 
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The anisidine test. standardized by the American Oil Chemists· Society ( AOCS. 1990l. 

involves a ~ondensation reaction between the conjugated dienals or 2-alkenals in the sample 

and ,n-anisidine reagent in isooctane followed by absorbance reading at 350 nm. 

lt is imponant thar the sample and reagents are dry. In particular. glacial acetic acid 

ust!d in the preparation of the reagent solution must be anhydrous. In the presence of acetic 

:.~cid . p-anisidine reacts \Vith aldehydes producing a yellowish colour. The molar absorbance 

at 350 nm incre~..ses if the aldehyde contains a double bond. Thus. the anisidine value ts 

mainly a measure of 2-alkenals and 2A-alkadienals 1Tompkins and Perkins. 1999). This test 

is panicularly useful for abused oils with low PVs such as frying oils. As a rule of thumb. 

for good oils the anisidine value should be less than about 10 1Ro~sell. 1994). .-\n 

~xpression termed the To[Ox value Ia measure of the total oxidation). which is equivalem to 

anisidine value plus m:ice the peroxide value. has been suggested for the assessment of 

l)Xidation of oils. The totox value is considered useful in that it combines e,·idence about the 

past history of the oil. in the anisidine value. with that of the present state of the oil. in the 

PV t Rossell. 1994 ). However. torox value is considered as a poor index of oxidation 

because it represents a sum of two quantities with incompatible units and provides less 

information than the anisidine and peroxide values reported separately (Robards er c1l .. 

l988al. 
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2.13.5 Acth·e oxygen and Oil stabilit~· Instrument 10SIV Rancimat methods 

The active oxygen method. also known a...; the Swift test. is a commonly used 

accelerated method for assessing oxidative stability of fats and oils. This method is based on 

the principle that oxidation of lipids is accelerated by aeration :n a tube held at a constant 

elevated temperature. The peroxide value reached by the active oxygen method at \Vhich an 

oil will be rancid by organoleptic evaluation varies \Vith the nature of the lipid. Even though 

this method has been used extensively over the years. its inherent deficiencies are 

Jetennined by the amount of peroxides in the oxidized oil : peroxides are unstable and 

decompose readily to more stable secondary products and during the rapid o:<.idation phase. 

the reacuon is extremely susceptible to variations m the o."<.ygen supply. 

Automated versions of the active-oxygen apparatus. known as the Oil Stability 

[nstrument I osn. Rancimat and Oxidograph are now available for monitoring the oxidative 

stability of oils. These methods may be considered as automated active-oxygen methods 

because they employ the principle of accelerated oxidation. However. the OSl and 

Rancimat tests measure the changes in conductivity caused by ionic volatile organic acids. 

mainly formic acid. automatically and continuously. whereas in the active-oxygen method. 

peroxide values are determined. Rancimat tests proceed slowly at first because during the 

induction period little acid is released. The end point is selected as the point at which the 

rapid rise in conductance begins. The Rancimat is capable of running eight samples 
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simultaneously. however. OSI is capable of running up to 2~ ..;amples at a ttme 1 Shahidi and 

W ana..-.;undara. 1997: 1998b ). 

2.13.6 Headspace analysis of volatiles 

Various types of headspace analyses. using gas chromatography. ha\·e been used to 

assess the oxidation of edible oils. In most of these techniques. the oil ts heated at ~0-60"C 

in dosed \·ials 1 Frankel. 1998bl. The volatiles. from decomposition of hydroperoxides a...;; 

well a..s those present before heating. collected in the headspace above the oil. are analyzed 

by gas chromatography. The total peak area of the volatiles in this technique increases with 

the length of the slOrage period of an oil. Therefore. this method can provide useful 

information about the origin of tlavour volatiles and their precursors 1 Frankel. 1993a: 

Rossell. 199~ l. This method is particularly suitable for highly volatile compounds because 

they have a favourable equilibrium between a sample and its headspace. producing a higher 

concentration of volatile compounds in the headspace. This method is rapid and suitable for 

routine analysis of many samples and does nm require any cleaning between sample 

injection because only the volatile components are injected into the gas chromatograph. but 

the nonvolatile portion of the sample is being retained in the vial (Frankel. 1998 ). The main 

disadvantage of this method is the difficulty of reaching complete equilibrium with viscous 

and semi-solid samples and with oxidized polyunsaturated lipid samples that can be easily 

decomposed during the equilibration heating step. 
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Gas chromatographic IGC) analyses of edible oils have revealed that hexanal and 

pentane are the major volatiles of oxidation of w6 PCFA. while propanal is the predominant 

volatile Jeri ved from CJ.l.3 PL.FA 1 Shahidi and W anasundara. 1998 l. ~loreover. King er a/ 

1 1995 1 reported an excellent corielation between GC results and ..;ensory scores in 

photooxidized soybean oil. v.hile pentanal and hexanal correlated well \Vith tlavour ..;cores 

of auto.xidized soybean oiL 

2.13.7 ~uclear 'lagnetic Resonance Spectroscopy 

Hydrogen atoms 'protons. 1H) of various types in triacylglycerol tTAGJ molecules 

could be determined using high resolution nuclear magnetic resonance 1 NMR> spectroscopy 

because hydrogen atoms in a strong magnetic field absorb energy from radio frequency 

region of the electromagnetic spectrum. de~nding on the environment in which they are 

placed in a molecule. During oxidation of lipids. changes occur in the environment in which 

protons in an oxidizing TAG molecule are located. These changes may be monitored by 

employing 1H NMR spectroscopy. 1H :"iMR spectroscopy offers major advantages over 

alternative laboratory methods since it permits the rapid. simultaneous study of many 

primary and secondary lipid oxidation products (Silwood and Grootveld. 1999). Use of 

~NIR methodology for evaluation of oxidative stability of vegetable and marine oils has 

been reported (Saito and Nakamura. 1990: Saito and Udagawa. 1992: Wanasundara and 

Shahidi. 1993: Shahidi et al.. 1994: Senanayake and Shahidi. l999b). 
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The ratios of aliphatic to olefinic IRanl and aliphatic to diallylmethylene <R.wl 

protons can be easily caku!ated. These ratios increase steadily during the oxidation of oils. 

~umenc:1l \':!lues of Rao and R:~J may be plotted against corresponding TOTOX values for 

edible oils. Shah1di t!l a/. l 1994l have ~hown a significant lp < 0.05) linear correlation 

between R~,1 and R1d and TOTOX values for oxidized seal blubber and cod liver oils. 

Therefore. ~MR methodology can be used to monitor oxidation of oils rich in PCFA. This 

method is particularly useful for assessing oxidation of lipids during later stages of storage 

when pero.xide values start to decline due to the decomposition of hydropero.xides. 

Saito and ~ak.arnura l 1990) have shown that the ratio of olefinic to aliphatic 

protons. measured by ~MR spectroscopy. decreases continuously as the oxidation proceeds. 

They suggested that the ~MR technique may be useful for measuring oxidation of PUPA

containing oils. even at stages beyond the point at which the peroxide value reached its 

maximum. Saito and Udagawa l 1992) used this method to evaluate oxidative stability of 

brown fish meal. They suggested that the NMR method is suitable for comparing the 

storage conditions of tish meal as well as estimating the effect of antioxidants in fish meals 

and oils. These authors reported good correlations between peroxide values and NMR data. 

However. Shahidi et al. ( 1994) found that linear relationships between peroxide values and 

NMR data were not as suitable as those of TOTOX values and NMR data. 

The NMR method is at least as useful as PV. however, accurate measurement of 

NMR is required because decreases in R30 and R:u1 are quite small as compared to large 
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mcreases in PV 1 Saito. 19971. :'\onethdess. :-..;;vtR methodology ts useful for mea.-;uring 

oxidative deterioration of vegetable and marine oils. 

2.1-" Control of lipid oxidation 

The oxidation of edible oils can be controlled by proper applkation of natural 

antioxidants. synthetic antioxidants. use of partially hydrogenated polyunsaturated fats. 

minimizing the loss of natural tocopherols. inactivation of prooxidant metals. blending of 

polyunsaturated fats with more stable monounsaturated fats. minimizmg exposure to 

oxygen. light and high temperatures. use of inert gas or vacuum packaging and genetic 

modification of fatty acid composition. [deal natural and synthetic antioxidants for food 

applications. should meet certain criteria such as safety. ease of incorporation. effectiveness 

at low concentration. absence of undesirable odour. tlavour and colour. resistance to high 

temperature experienced during frying as well as availability at low cost ( Cnppen. 1994 l. 

2.1-1.1 Removal of oxygen 

Oxygen is an essential reactant in oxidation of unsaturated fatty acids. Therefore. 

control of oxygen availability is a critical factor in minimizing oxidation of lipids. The level 

of available oxygen may be controlled by vacuum and modified atmosphere packaging 

(Josephson eta/ .. 1985) and by using oxygen scavengers such as ascorbic acid oxidase and 

glucose oxidase (Hsieh and Kinsella. 1989). These precautions reduce the rate and extent of 
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lipid oxidation. especially when combined \Vith antioxidants and low temperature storage in 

th~ dark. 

2.1 ~.2 C se of antioxidants 

Antioxidants are added to oils to retard oxidation and to reduce development of 

rancidity. However. antioxidants cannot improve the quality of already oxidized food 

products l Dziezak. 19861. Synthetic antioxidants such ~ butylated hydroxyanisole t BHAl. 

butylated hydroxytoluene t BHT). propyl gallate 1 PG) and teniary-butylhydroquinone 

1TBHQl have been commonly used to inhibit lipid oxidation and to retard the rancidity 

development in foods. However. their use is increasingly contested for a variety of reasons 

1 health concerns. legal issues. etc. l and there is a considerable commercial interest in the use 

of natural antioxidants. 

Antioxidants can be divided into two broad classes. referred to as chain-breaking 

antioxidants. which interfere with one or more of the propagation steps. and preventative 

antioxidants. which reduce the rate of initiation. Chain-breaking antioxidants inhibit or 

retard lipid oxidation by interfering with either chain propagation or initiation by readily 

donating hydrogen atoms to lipid perox.y radicals. 

LH 

L• + 0:: 

(\ ) 

(2) 



LOO" + LH 

Loo· + AH 

L" + .-\H 

A" + LOO" 

A" + A" 
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LOOH + L" 

LOOH +A" 

LH + .-\" 

1.31 

~on-radical products 161 

~on-radical products 1 7) 

Phenolic compounds with bulky alkyl groups such as BHA. BHT. TBHQ and 

£Ocopherols are effective chain-breaking antioxidants 1 AH) because they produce stable and 

relatively unreactive antioxidant radicals A •. by reactions 1 ..t 1 and 1 5 l. that are too unreactive 

to propagate the chain. They are also able to compete with the lipid substrate 1 LH'l. present 

in much higher concentration in reaction t 3 ). for the chain-carrying peroxy radicals. LOO". 

Preventative antioxidants prevent or delay lipid oxidation by decreasing oxygen 

active compounds in the medium. Chelating Zlgents are the most important compounds of 

this type . These compounds deactivate metal ions. which promote the initiation and 

decomposition of hydroperoxides. and thus retard the formation of secondary aldehydes. 

Common chelating compounds include citric acid. phosphoric acid and 

ethylenediaminetetraacetic acid (EDT A). 

:"iaturaJ antioxidants acting as radical scavengers are generally phenolic compounds. 

Tocopherols are one of the importan[ natural antioxidants and serve as free radical 

scavengers and singlet oxygen quenchers tShahidi and Wanasundara. 1992; Cuppett et al.. 

1997 l. They act in the mode of inhibition of free radicals produced by singlet oxygen 
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oxidation of FF:\ and in the! mode of direct quenching of singlet oxygen 1 Yamauchi ;,md 

~tatsushita. 1977 L Tht!st! ~ompounds not only quench singlet oxygen by physical quenching 

mechanism. but abo react with singlet oxygen by chemical quenching 1 Yang and ~tin. 

199-l.l. Howe\·er. physical quenching is the major mechanism in the tocopherols. a

Tocopherol ha.s been reported to be the major antioxidant defence against lipid oxidation 

d anero. 1991 l a-Tocopherol slows or stops propagation of oxidation although it does not 

appear to be able to prevent initiation of the process 1 Frei et a/.. 1989l. Other types of 

na[Ural antioxidants indude ascorbic acid. tlavonoids and green tea catechins and rosemary. 

""ge and other spice extracts. For example. ascorbic acid is the natural compound most 

~ommonly used as an oxygen scavenger tlee eta/ .. 1997) and carotenoids are the most 

~ommon singlet oxygen quenchers employed 1 Decker. I998l. 

2.1-'.3 Packaging 

Since photooxidation occurs in the presence of light. it can be prevented if the 

proper packaging material is used. Ideal containers for oils should be impermeable to air 

and moisture and should be opaque to light to prevent further oxidation during prolonged 

storage under ambient conditions. Polyvinyl chloride is preferred because it is less 

permeable to oxygen and superior to polyethylene. which is permeable to oxygen. 

Generally. coloured or opaque plastic containers are preferable to protect oils from 

photoox.idation. 
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Although the follov;ing materials are not all used practically. their protection against 

photooxidation is JS follows : polyester > wax paper > polyethylene > nylon t Faria and 

~tukai . 19g3 1. This protection is due to the absorption of light by packaging materials 

causing a spectral transmission. 

2.14A \licroencapsulation 

PL.F:\ containing highly oxidizable oils such as tlsh and marine oils can be 

protected by a process known as microencapsulation which coats the oil \\ ith a thin matrix 

of carbohydrate tstarch. dextran. sucrose). protein tcasein. albumin. gelatin. gluten ) or 

lecithm. among others. This process provides protection against o.'<idauon and imparts 

oxidative stability. The use of cylcodextrins as a coating is claimed to provide better 

protection of oils by improved oxygen barrier properties (Wanasundara and Shahidi. 1995). 

For special applications as nutritional supplements. fish and marine oils enriched in w3 

PCF:\ are microencapsulated into a powder product that is relativel y stable for storage at 

ambient temperatures. 

2.15 Response surface methodology (RSM) and process optimization 

Response surface methodology ( RSM ) is a collection of mathematical and 

statistical techniques useful for analyzing problems in which several independent 

variables intluence a dependent variable or response. with the goal being to optimize this 
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response . In most RS~t problems. the form of the relationship between the response and 

the independent variables is unknO\\iO. Thus. the first step in RSM is to find a suitable 

approximation for rhe true functional relationship between the responsl.! and the set of 

independent variables. Csually. a 10\a,.·-order polynomial in some region of the 

independent variables is employed. If the response is well-modeled by a linear function of 

the independent variables. then the approximating function is the first-order model. [f 

there is curvature in the system. then a polynomial of higher degree. such as the second

order modt!l must be used. Almost all RSM problems utilize one or both of these 

approximating polynomials. Of course. it is unlikely that a polynomial model will be a 

reasonable approximation of the true functional relationship over the entire space of the 

independent variables. but m a relatively small region they usually work quite well. 

Polynomial models provide sufficient tlexibility to adequately approximate many 

complicated. but unknown. relationships between a dependent variable or response and 

one or more independent variables. In many important problems in science the underlying 

mechanism that generates the data is not well understood. due to the complexity of the 

problem and lack of sufficient theory. In these cases polynomial models can provide 

adequate approximations to the unknown functional relationship <Mason et al.. 1989). 

One should start with the simplest model warranted by what is known about the response 

under investigation. If a lack-of-fit test indicates that the proposed model is an inadequate 

approximation to the observed responses. one can either add the next higher-order terms 
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into the model or investigate nonlinear models . In many experimental situations. a first

or second-order polynomial is adequate to describe a response 1 \lason et lll .. 19891. 

Some attractive features of RS~t are that 1a1 it is a sequential approach. the results 

at each stage guiding the experimentation to be conducted at the ne.'(t 1 at each step of the 

iteration only a limited number of experimental trials are run I. thereby ensuring that ones 

resources are not squandered on unproductive trials: 1 b) it ca..-;ts the experimental problem 

in readily understood geometric terms: and lc l it is applicable to any number of variables. 



CHAPTER 3 

~lA TERIALS .-\~D \IETHODS 

3.1 \laterial~ 

Borage oil was obtained from Bioriginal Food and S~ience Corporation 

1 Saskatoon. SKJ. and t!vening primrose oil was prO\ tded by Efamol. Inc . t Kentville. \"S l. 

.-\lgal oil containing DHA t-+7.--V'cl was from \lartek Biosciences Corporation tColumbta. 

\tDl. EPA concentrate was provided through Dr. T. Ohshima tTokyo. Japan 1. Three I kg 

containers of each type of oil were received and stored at -20°C until use . 

Fatty acid methyl esters tGLC--461 and methyl tricosanoatel were purchased from 

Su--Check 1 Elysian. \IN I company. Reagents. 2--thiobarbituric acid 1 TBA 1. 1.1.3.3-

tetramethoxypropane. butylated hydroxytoluene t BHT). hydroquinone. sodium sulphate. 

triolein. diolein. monoolein. oleic acid. cupric acetate. pyridine. gum arabic. starch. 

phenolphthalein. phenyl dichlorophosphate. calcium chloride. sodium btcarbonate. 

pota..ssium hydroxide. sodium hydroxide. boric acid. sodium thiosulphate. potassium 

iodide. tris base. methyl magnesium bromide. Hanus iodine solution. phospholipase Az. 

porcine pancreatic lipase. sodium taurocholate. acetaldehyde. propanal. butanal. pentanal. 

hexanal. heptanal. nonanal. decanal. .2.-+-decadienal. silicic acid and silica gel TLC plates 

(.20 x .20 em; 60A mean pore diameter. 2-25 J..lm mean particle size. 500 J..lm thickness. 

with dichlorotluoresceinl were purchased from Sigma Chemical Co. (St. Louis. MO). 



l l-l 

D~uterat~d ~:hloroform was obtained from Cambridge Isotope Laboratories t Andover. 

\1:\J. Hex.an~. ethanol. methanol. hydrochloric acid. sulphuric acid. chloroform. 

isooctanc. hllhutanol. petroleum ether t boiling point range 35-60''C 1. •u..:etone. benz~n~ . 

toluene. ac~tic add. diethyl ether. ethyl acetate. triethylamine. triethylammonium 

bicarbonate. carbon disulphide J.nd ammonium hydroxide were purchased from Fisher 

Sci~ntific t ~epean. ON). Helium. hydrogen. nitrogen and compressed a1r were llbtained 

form Canadian Liquid Air Ltd. 1 Sl. John ·s. ~F). Six types of microbial lipases used were 

provid~d by different manufacturers as listed in Table 3.1. Lipozym-I.M is a 1.3-specific 

lipase from .Hucor miehei immobilized on a macroporous anoin exchange resin. 

~ovozym--B5 from Candida cmtarc:rica wa.s immobilized on a macroporous acylic resin. 

However. lipases from Pseudomonas sp .. Aspergillus ni~er. Cmdida ru~o.w and 

Tlremwm\·ces lanuginosus used were not immobilized. 

3.2 'leth~s 

3.2.1 Preparation of DHA concentrate from algal oil 

3.2.1.1 Preparation of free fatty acids from algal oil 

Preparation of free fatty acids from algal oil was carried out according to the 

scheme given in Figure 3.1. Algal oil C!5 g. treated with 200 ppm BHTt was saponified 

by retluxing in 95 9C ( v/v 1 aqueous ethanol (66 mU with water t II mU and KOH ( 5. 75 



Table 3.1 Microbiallipases employed, their suppliers and characteristics 

Enzyme Commercial code Manufacturer" 

Candida antarctic:a Novozym-435 Novo 

Mucor miehei Upozyme-JM Novo 

Pseudomt111as sp. PS-30 Amano enzyme 

Aspergillus niger AP-12 Amano enzyme 

Candida rugosa AY-30 Arnano enzyme 

Thennomyc:es lanuginosus Novozym-67780 Novo 

Positional specificity 

.m-1 ,3/ Nonspecific 

l 'll - 1 ,3 specific 

Nonspecific 

.m · l ,3 specific 

Nonspecific 

.m · l ,3 specific 

Ent.ymc adivity 

( ll )" 

554 

U,flU 

ll,lJ36 

X,l42 

JK,707 

7,65K 

•Manufacturer locations: Amano Enzymes U.S .A Co., Ltd., Troy, VA; Novo Nurdisk Biodtcm North America, Inc .. 
Franklinton. NC. 
bEnzyme activity was delennined as given in Section 3.2.2. 

iA 
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Figure 3. 1 Flowsheet for preparation of free fatty acids (fFA) from algal oil 
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g, for I h at the boiling temperature of the mixture 162 ± 2''C \ under a blanket of nitrogen. 

FL)IIO\\. ing saponification. distilled \Vater t50 mLJ was added to the mixture and the 

unsapon1fiabk math!r was e:v.tracted into hexane t 2 :v. 100 mL l and discarded. The 

aqueous layer concaining saponifiable matter \Vas acidified 1 pH = 1.0) w11h 3~ HCI. The 

mixture was transferred to a st!paratory funnel and the liberated fatty acid!-> were e:v.tracted 

into 50 mL of hexane. The hexane layer concaining free fatty acids was then dried over 

anhydrous sodium sulphate and the solvenc removed at ~O''C to recover free fatty acids 

1xhich were then stored at -20''C until use. 

3.2.1.2 Preparation of DHA concentrate from algal oil by urea complexation 

The separation of DHA from the hydrolyzed fatty acid mi:v.ture t Sc::ction 3.2. 1. 1 l 

or" algal oil was carried out by urea-fatty acid adduct formation according to the scheme 

given in Figure 3.2. Free fatty acids t 10 g) were mixed with urea t 20Cic. w/v l in 95q. 

aqueous ethanol and heated at 60"C while stirring until the whole mixture turned into a 

dear homogenous solution. Initially. the urea-fatty acid adduct was allowed to crystallize 

at room temperature. but was later placed in a cold room at ~"C for 2~ h for further 

crystallization. The crystals 1 urea-fatty acid adducts. also referred to as the urea 

complexing fraction: UCF) fanned were separated from the liquid t non-urea complexing 

fraction: ~UCF) by suction filtration through a thin layer of glass wool. The filtrate 

( NLTCF) was diluted with an equal volume of water and acidified to pH ~-5 with 6N HCI : 
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Figure 3.2 Aowsheet for preparation of DHA concentrate by urea complexation 
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an ~!qual volume of hexane \'.:as subsequently added and tht! mixture stirred thoroughly for 

I h. then transferred to a separatory funnel. The hexane layer ~ontaining liberatt!d fatty 

a~ids was -it!parated from the aqueous layer containing urea and \vasht:d with Jistillt!d 

water to remo\·e any remaining urea and then dried over anhydrous -;odium sulphate. The 

-;ol\ent v,:as subsequently removed at ~O"C using a rotary evaporator. Fatty acids from 

L"CF were recovered after addition of water/6N HCI and hexane in a -.imilar manner 

1 Figure 3.31. The t,,,.o fractions were \veighed separately and percl!ntagt: recover\· 

~alculated. 

3.2.2 Determination of enzyme activity of microbial lipases 

Lipase activity was measured by assaying fatty acids produced from the hydrolysis 

of triacylglycerols. All experiments were carried out in screw-capped test tubes in 

triplicate. Triolein was used as the substrate. It was emulsified at a concentration of 50 

m~t in 5C7c 1 w/v 1 gum arabic for I min using a Polytron homogenizer 1 \ltodel PT -3000: 

Brinkmann. Littau-Switzerland) at 8000 rpm. The assay mi ."<.ture contained I mL of 

substrate emulsion and the enzyme 1 10-l 00 mg) . Reactions were carried out for up to l h 

in a shaking water bath at .250 rpm and 35•>c. Fatty acid release varied linearly with time 

for more than l h. The released fatty acids were assayed colorimetrically as copper soaps 

using cupric acetate-pyridine reagent (Lowry and Tinsley. 1976: Kwon and Rhee. 1986). 
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Figure 3.3 Recovery of fatty acids from urea complexed fraction (UCF1 
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The purity of triolein \.Vas verified by thin-layer chromatography-tlame ionization 

detection t TLC -FID 1: no mono- or diacylglycerols \vere present. 

The enzyme reaction in the emulsion system was stopped by adding 6 ~ HCI ( I 

mLl and isooctane 15 mlt followed by mi:<ing for I min . Cupric acetate (I mL. 5% w/v. 

pH 6 . I l solution was then added to the mi:<ture and stirred for 90 s using a vorte:< mixer: 

the absorbance of the upper isooctane layer was read at 715 nm 1 Arribere et al .. 1994 l. 

One unit of lipase activity was defined as nanomoles of fatty acids foleic acid 

equivalents l produced per minute per gram of enzyme. 

3.2.3 :\cidolysis 

ln general. borage 1300 mg l or evening primrose oil ( 297 mg) was mixed with 

EPA and/or DHA. m a screw-capped test tube. and then lipase ( 150-350 enzyme activity 

unttsl and ""ater <2cc by weight of substrates plus enzyme) were added in hexane 13 mll. 

The mixture was stirred in an orbital shaker at 250 rpm and temperatures ranging from 20 

to 60°C. Individual sample vials were removed and analyzed at different time periods (6-

30 h). 

3.2.3.1 Analysis of products 

The enzymes were removed by passmg the reaction mixture through a bed of 

anhydrous sodium sulphate. Samples were placed in 250-mL conical flasks and 20 mL of 
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a mixture of a~etone/ethanol 1 I: I. v/v 1 were added. The reaction mixture was titrated with 

0.5 :'\ :'\aOH to a phenolphthalein endpoint. The mixture was transferred to a ~eparatory 

funnel and thoroughly mixed with 25 mL hexane. The lower aqueous layer \vas -;eparated 

and discarded. The upper hexane layer comaining acylglycerols was passed through a bed 

of anhydrous sodium sulphate. The acylglycerol fraction was subsequently recovered 

foliO\\ ing hexane removal at ~5''C using a rotary evaporator. The fatty acid composition 

of the a~ylglycerols was analyzed by gas chromatography as described in Section 3.2.8. 

The products tTAG. DAG and ~AG). obtained under optimum reaction 

conditions. \vere quantified by thin-layer chromatography-flame ionization detection 

1TLC-FID1 using benzene/chlorofonnlacetic acid !70:30:4. v/v/v 1 as the developing 

solvent tAngelo and James. 1993). The reaction products were also fractionated on TLC 

plates t20 x 20 ~m: Silica gel. 60 A mean pore diameter. 500 !J.m thickness. with 

Jichlorotluorescein. Sigma) impregnated with a 5% cw/v) boric acid solution. The plates 

were developed using hexane/diethyl ether/acetic acid (70:30: I. v/v/v ). After drying. the 

bands were located by viewing under short <254 nm) and long 1365 nml UV lights 

1 Spectroline. ~lode! ENF-240C. Spectronics Co .. Westbury. ~YI. The bands were 

scraped off and their lipids extracted into diethyl ether and subsequently used for fatty 

acid analysis by gas chromatography as described in Section 3.2.8. 
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3.2.-' Thin Layer Chromatography-Flame Ionization Detection (TLC-FID) 

The products obtained under optimum reaction conditions after acidolysis were 

chromatographed :-.eparately on 'ilica gel coated Chromarods S-ill and then analyzed on an 

[atroscan ~IK-5 datron Lahoratories lnc .. Tokyo. Japanl analyzer equipped with a tlame 

ionization detector 1 FIDl connected to a computer loaded v.•ith T data '\can ,oftware 

1 Scientitic Products and Equipment. Concord. ON) for data handling. The FID was operated 

using a hydrogen tlow rate of 160 mUmin and an air tlov .. · rate of 2000 mUmin. The rods 

were scanned at a speed of 30 s/rod. 

3.2.-'.1 Preparation of Chromarods 

The Chromarods were cleaned by soaking in concentrated mtric acid overnight and 

then thoroughly washed with distilled water and acetone. To improve separation. 

Chromarods were subsequently impregnated with boric acid by dipping in a 3'1- 1 w/v l boric 

acid solution for 5 min followed by drying at 120"C for 5 min. The Chromarods were 

scanned twice to bum off any remaining impurities. 

3.2.-'.2 Calibration of Chromarods 

A composite stock solution of lipid standards containing free fatty acids toleic acid). 

monoacylglycerol ( monoolein ). diacylglycerol ( diolein l and triacylglycerol (triolein l were 

prepared in chloroform/methanol (2: I. v/v) and stored under nitrogen at -20°C. Different 
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dilutions of th~ :-.to..:k solution 1 10 mg/mL). ranging from 0.1 to 10 !Jg/!JL of lipid mix.ture. 

w~re us~d as \vorking standards. Bdore making the ~omposite standard mix.ture. each 

~ompound \vas d~v~loped individually and run on the Iatroscan-FID to det~rmine its purity 

and R1 value. The samples dissolved in appropriate solvents were spotted on rods using 

Drummond microcap disposable pipettes 1 Drummond Scientific Co .. Broomall. PA ). As 

soon as the samples were spotted. solvents were dried off using a stream of cold air supplied 

by a biO\v dryer. Prior to development. the Chromarods \vere conditioned in a humidity 

chamber containing saturated calcium chloride for 10 min and then immediately transferred 

to the developing tank. 

3.2.-'.3 Chromarod development 

The lipids were dissolved in chloroform/methanol 12: I. v/v l in order to obtam a 

concentration of I!Jg lipid/!JL. The sample 1 l !JUrod) was applied on nine out of ten rods 

and a randomly selected rod was used for the standard mixture. 

The development of rods was carried out for 45 min in benzene/chloroform/acetic 

acid 170:30:4. v/v/v l 1 Angelo and James. 1993). The chromarods were then dried at ll0°C 

for 3 min and scanned using the Iatroscan TLC-FID Analyzer. This procedure was repeated 

three times for each sample. Peaks in each chromatogram were integrated with TSCAN data 

software. The identity of each peak was determined by comparison with a chromatogram of 

standards ran concurrently with the samples. The determination of the weight of the 
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indi\·idual compounds was achieved by construction of ~tandard cun:es usmg a known 

amount of each standard on Chromarods developed under identical conditions described 

earlier. 

3.2.5 Optimization procedure for production of structured lipids via acidolysis 

3.2.5.1 Experimental design and data analysis 

The experimental design adapted for response surface methodology 1 RSM) was a 

three-factor :.md three-level face-centred cube design wah 17 individual design points 

!Table 3.2 and Figure 3Al 1~fason et al .. 1989: Gao and ~tazza. 1996l. The independent 

variables or factors studied were the amount of enzyme 1 units: X 1 ). reaction temperature 

l''C: X~l and reaction time 1h: X:l lTable 3.2). Responses or dependent variables tYl 

studied were DHA. EPA and EPA+DHA incorporation 1 '7c l. To a. void bias. 17 runs were 

performed m a randomized order. Duplicate experiments were carried nut at all design 

points except at the centre point 10.0.0l where three replications were performed to allow 

the estimation of the .. pure error ... 

The second-order quadratic polynomial regression model was assumed for 

predicting response variable. The generalized model propose for response ( Y) was: 
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Tabk 3 .2 Face-;.;t!ntred cube design 

Design point X1 1 Enzyme units 1 X~ (°C) X 3 !ht 

1-ll.l (-I ) (-I ) 

., 
I -I ) 1-1) 1+1) -

3 I -I) I+ 1) I -I) 

... I -I ) (+I) ( + l) 

5 l+ll ! -I) (-I ) 

6 1+11 (- l ) (+1) 

7 !+II (+ l) (-{) 

8 1+1) ! +I) (+l) 

9 I -II 10) (0) 

10 1+1) 10) 10) 

II (0) (-I) 10) 

12 (0) (+1) 10) 

13 IOl (Q) 1+1) 

1-l <Ol 10) ( -1 ) 

15 ~o ·, 10) (0) 

16 ( Q) (0) (0) 

17 (0) 10) (0) 

3 Coded variable levels. Coded value = (Original value - M)IS. where. M and S are the 
average of the highest and lowest variable levels. and half their difference, respectively. 



1
.,.., _, 

Figure 3.4 Graphical representation of the face-centred cube design 
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\o,;here ~. . . ~.. ~ ... :.1nd ~q are intercept. linear. quadratic and interaction regression 

~odficient terms. respectively. and X, and X1 are independent \·ariab\e!'l . The statistical 

analysis systt!m t SAS Institute Inc .. \990) was used for multiple regression analysis. 

analysis of \ ariance t A:--.;OV .-\1 and canonical analysis . Response .;urfaces and contour 

plors \\•ere developed using the fitted quadratic pol~ nomial , ,juation!'l obtained from 

response surface regression t RSREG l analysis and holding the independent variable with 

the least effect on the response at a constant value and changing the levels of the other 

two variables . Verification t! :~periments were carried out using combinations of variables 

at different levels twithin the experimental rangel. 

3.2.6 Chemical and instrumental analyses 

3.2.6.1 Determination of iodine value 1 IV) 

The iodine value of oil samples was determined according to the Official ~tethod 

of the American Oil Chemists' Society IAOCS. 1990: Method Cd 1-251. Samples t0.\-

0.2 g of oil l were we ighed into 250 mL glass-stoppered Erlenmeyer tlasks and dissolved 

in I 0 mL of chloroform. After thorough mixing. the tlask was wrapped with aluminum 

foil and 25 mL of Hanus iodine solution were added to it and the mixture was allowed to 

stand for 30 min in the dark.. Afterwards 10 mL of 15'7c (w/v) potassium iodide tKl) 

solution and 100 mL distilled water were added to the sample. The mixture was 

subsequently titrated against a standardized 0.1 ~ solution oi sodium thiosulphate 
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1 :--.:a:S:O: 1 with ~.:onstanr shaking until the yellow ~olour of the mixture disappeared. 

Subsequently. 0.5 mL of starch indicator solution 1 Icc-. \v/vl was added to the mixture and 

titration ~.:ontinued until the blue ~.:olour of starch-iodine complex had disappeared. :\ 

blank titration \\as ~onducted each time. The [V was expressed as the uptake of iodine in 

grams h~ I 00 g of oil . 

rv - tV \ " 1 X,. '"~aS 0 X 1_..,_69,_ I'. · ·t · ·'"'~.· or· ..:ample~~-~ - l:llank - S.unph! • ·" . " : : 1 • .v ...., ,, ., _ 

Where V is the volume 1 mL1 and~ is the normality of sodium thiosulphatl:! solution. 

3.2.6.2 Determination of peroxide value ( PV) 

The official .\tethod of the American Oil Chemists · Society 1 AOCS. 1990: 

method CJ 8-53 I was ust:d to determtne P\" 1)f each oil. Samples t2 .0--l.O g of oil 1 were 

weighed into 250 mL glass-stoppered Erlenmeyer tlasks and dissolved in 30 mL of acetic 

acid/chloroform !3:2. v/vl. The contents were mixed until the oil had completely 

dissolved. upon which 0.5 mL of a saturated solution of potassium iodide 1 KO was added. 

The mixture was allowed to stand in the stoppered tlasks with occasional shaking for 

exactly 1 min and then mixed with 30 mL of distilled water. The liberated iodine was 

titrated against a standardized solution of 0.01 ~ sodium thiosulphate 1 Na2S10~) while 

shaking constantly until the yellmv colour disappeared. About 0.5 mL of starch indicator 

solution 1 l 0 c. w/v 1 was then added to the content of the flask and titration continued with 

vigorous shaking until the blue colour of the solution disappeared. A blank titration was 
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(onductc!d c!a(h time!. Peroxide \·aluc! was c!Xpressc!d as the uptake! nf mtlliequi\.;.llem ... l)f 

actt ve oxygen 1 i.e. peroxide l per kg of oil. 

PV = tV s.unrk - V BLmk l X ~ ~a.:S .:0, X I 000 I \tass of sample t g l 

Whc!re V is the volume 1 mll and~ is the normality of the sodium thiosulphate solut1on . 

3.2.6.3 Determination of saponification value ISV) 

The saponification value of oil samples was determined according to the Official 

\-lethod uf the American Oil Chemists· Society t AOCS. 1990: \lethod Cd 3-.251. 

Sampks 12-3 g of oil l were weighed into a 100 mL round bottom tlask and m1xed with 

25 mL uf a 0 .5 ~ alcoholic KOH solution while stirring. The tlask wa..o.; attached to a 

(Ondenser and the mixture was retluxed in a hot water bath 160 :: 5''Cl for 60 min . 

Retluxing wa.-; continued until oil droplets in the mixture disappeared. Phenolphthalein 

indicator 1 I mL. ICC. w/vl was added to the tlask and the mixture titrated with 0.5 ~ HCl 

solution until the pink colour of the solution had disappeared. :\ blank titration was 

(Onducted in a manner similar to that of the sample but in the absence of any oil. The SV 

was expressed as the number of mg of KOH required to saponify I g of od as given 

bdow: 

SV =IV Blank- V sample) X~ HCI X 56.1 I ~lass of sample (g) 

Where Vis the volume ( mL1 and~ is the normality of hydrochloric acid solution. 



3.2.6A Determination of acid value ~ :\ \" 1 

The acid value of oil samples was determined according w the Official ~lethod of 

the American Oil Chemists· Society 1.-\0CS. 1990: \.1ethod Cd 3a-63J. Samples t2-10 g 

of oil l were weighed into a 250 mL glass Erlenmeyer tlask and mixed v.;ith 50 mL of 95cc 

1 v/v t aqueous ethanol 1 neutralized v•ith 0.5 ~ KOH 1 and 2 mL of I cc phenolphthalein 

indicator. The mixture \'vas heated to 70''C \vhile stirring and then titrated against a 

->tandardized 0 . 1 ~ alcoholic potassium hydroxide 1 KOHl solution to attain a permanent 

pink colour . .-\ blank titration wa....; conducted each time. The .-\ V was expressed as the 

amount of KOH 1 in mgl required to neutralize free fatty acids present in I g of oil. 

.-\ V = IV samplt:- V Blank l X ~ xoH X 56. 1 I \.'tass of sample 1 g J 

Where V is the volume 1 mll and~ is the normality of potassium hydroxide solution . 

3.2.6.5 Determination of l·thiobarbituric acid-reacth·e substances (TBARS> 

The direct TBARS value determination of the :\merican Oil Chemists ' Society 

tAOCS. 1990: \.-1ethod Cd 19-90) was employed. Oil t50-200 mgl was accurately 

weighed into a 25 mL volumetric tlask and dissolved in a small volume of !-butanol and 

made up to the mark with the same solvent. Five mL of this solution was transferred into 

a dry test tube to which 5 mL of fresh TBA reagent !200 mg 2-thiobarbituric acid in 100 

mL !-butanol l was added. The contents were thoroughly mixed and heated in a water 

bath at 95'>C for 2 h. Heated samples were cooled in an ice bath and the absorbance of the 
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resulting LOioured ~.:omple:'\ '"as reJ.d at 5.32 nm using a Hewlett Packard diode array 

..;pectrophotometer 1 .\lode! 8-+52A. Hewlett Packard Co .. \lissisau~a. 0~ l. A standard 

(:Uf\e was prepared using 1.1.3 .3-tetrametho:'\ypropane (T.\lP\ as a malonaldehyde 1 \lA1 

precmsor 1 Figure :\.II 1 Yu and Sinnhuber. 1967 1. The number of !Jmol o f .\1.-\ 

equivalents in each gram of oil. e:'\pressed as TBARS value. was calculated usmg the 

equation C = 1 0 .335.-\.,. 2 1/W ( r = 0.996 l. Where C represents the LOncentration of \lA. A 

is the absorbance of the LOloured complex. at 532 nm and W is the ma..ss of o il. 

3.2.7 Stereospecific analysis of enzymatically modified oils 

3.2.7.1 Removal of constituents other than triacylglycerol in enzymatically modified 

oils 

Remo,·al of constituents other than triacylglycerol s from enzymatically mod ified 

borage and evening pnmrose oils was carried out using column Lhromatography 1 1.25 em 

mtemal diameter and 10 em height! on silicic acid i 100-200 mesh siLe. SigmaJ. The 

column was first washed with hexane and then 1.25 g oil was introduced onto it. Hexane 

(50 mL 1 was added to the column. which was then eluted with l OC7c ( v/v 1 diethyl ether in 

hexane 1250 mLl. The solvent was removed under vacuum at -+0°C using a rotary 

evaporator. The recovered oil was then passed through a layer of anhydrous sodium 

sulphate. In order to prevent ox idation of purified oils. a few crystals of BHT were added 

to the mixture. 



3.2.7.2 Grignard reaction on enzymatically modified borage and evening primrose 

oils 

Grignard rea~o:tion \vas performed on puri ficd modi fit:d oi Is 1 Section 3 .2. 7. 1 l 

accordmg to the method described by Bro~.:kerhoff t!t al. 1 19631 and Brockerhoff 1 1971 1 

with some modifications. The purified oil 1 1.0 g 1 \vas dissolved in anhydrous diethyl 

ether 150 mL 1 and mixed \Vith methyl magnesium bromide t3.5 mL. 3.0 :\.1 CH 1MgBr. 

Sigmal. The Grignard reaction was allowed to proceed with continuous stirring until a 

dear -;elution was obtained. To stop the reaction. glacial acetic actd 1 1.0 mL) was slowly 

added to the mixture fol\0\ved by 10cc 1 w/v 1 boric acid solution 1 10 mL: to minimize acyl 

migration 1. Stirring of the reaction mixture was continued for another 2 to 3 min. The 

\Vhole mixture W<L'i then transferred to a separatory funnel and allm..-ed to separate into 

two layers . The top ether layer wo.Ls removed and the lower aqueous layer was washed 

twice with diethyl ether. The combined ether layers were washed successively with 10 

mL of water. 10 mL of 2'k- tw/vl aqueous sodium bicarbonate and 10 mL of water and 

then dried over anhydrous sodium sulphate. 

3.2.7.3 Separation of individual lipids after Grignard reaction 

Products of the Grignard reaction from Section 3.2.7 .2 were dissolved in a 

minimum amount of chloroform and applied to several TLC plates t20 x 20 em: Silica 

gel. 60 A mean pore diameter. 2·25 J.lm mean particle size. 500 J.lm thickness. with 



Jichlorntluor~sc~tn. SigmaJ impregnated with 5'1 1 w/v ) boric acid. The plates were 

Jevcloped in two Jifferent solvent systems oi diethyl ether/petroleum ether (boiling potnt 

30-60''C 1 i 8 :l)2. \fv 1 and diethyl ether/petroleum ether (~0:60. v/v I. re~pectively .. \ fter 

drvm2:. the bands were locared bv viewing under short ! 254 nm l and long ! 356 nm 1 - - - .... ....... 

wa\ekngth L'V lights 1 Spectraline. ~lode! ENF-240C. Spectronics Co .. Westbury. :\Y l. 

From the separated bands of triacylglycerol !TAG: Rr = 0.99). tertiary· alcohol ( Rf = 0. 72 ). 

1.2- 1 1.2-DAG l and 2.3-diacylglycerols 12.3-DAG: R1 = 0.32). 1.3-diacylglycerol 1 1.3-

DAG: R, = 0 .~11 and monoacylglycerols 1~1:\G: Rf = 0.05) !Figure 3.51. 1.2- and 2.3-

Jiacylglycerol bands were scraped and then extracted with diethyl ether. The ether layer 

\Vas evaporated under nitrogen to obtain 1.2- and 2.3-diacylglycerols. After removing a 

small sample ior fatty acid analysis. the diacylglycerol fractions were used to prepare 

synthetic phospholipids. 

3.2. 7.-1 Preparation of synthetic phospholipids from diacylglycerol fraction 

The 1.2- and 2.3-diacylglycerols. obtained as described in Section 3.2.7.3. were 

dissolved in 1.0 mL of diethyl ether and mixed with 2.5 mL pyridine/diethyl ether/phenyl 

dichlorophosphate 1 I : I :0.5. v/v/v l. The reaction mixture was then allowed to stand at 

room temperature for I h. after which 5 mL of pyridine. 3.0 mL of diethyl ether and a few 

drops of water were added while cooling in an ice bath. The content of flask was 

subsequently mixed with 86 mL of methanol/water/chloroform/triethylamine (30:25:30: 1. 
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Figure 3.5 TLC chromatogram of Grignard deacylation products 
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v/v/v/v 1. After standing. the lower ~.:hloroform layer ~o:ontaining synthetic phospholipids 

1 1.2-Jia~.:~ 1-3-phosphatid~ and 2.3 -diacyl-1-phosphatide I was separated. and the solvent 

remO\eJ Jt ~O"C using a rotary evaporator. The recovered symhetic phospholipids were 

used for stereospecific hydrolysis by the phospholipase A: enzyme. 

3.2. 7.5 Stereospecific hydrolysis of synthetic phospholipids by phospholipase :\ 2 

The -;vnthetic phospholipids ( 1.2-diacyl-3-phosphatide JnJ 2.3-diacyl-1-

phosphatide) obtatned m Section 3.2.7A were dissolved in 3.0 mL of diethyl ether and 

transferred to a solution containing 15 mL of 0.1 ~ triethylammonium bicarbonate (pH 

7.51. 100 J..LI of 0.1 ~~ ~.:alcium chloride and 2.0 mg of phospholipase .-\,e 1EC. 3 . 1.1.~: 

Sigmal obtained from snake venom (Crotalus adamantus). The mixture was then shaken 

gently overmght in a Gyrotary water bath shaker (Model G76. :-.;ew Brunswick Scientific 

Co. lnc .. ~ew Brunswick. :"-iJ 1 and water in the mixture was evaporated at ~O''C using a 

rotary evapora[Or. ln order to prevent foammg during evaporation. 15 mL of isobutanol 

v.:as added to the mixture. 

The hydrolyzed products were dissolved in 1.0 mL of chloroform/methanol ( 1: I. 

v/v 1 containing one drop of glacial acetic acid. The dissolved hydrolytic products were 

applied to silica gel TLC plates ( 20 .~ 20 em: 60 A mean pore diameter. 2-25 Jlm mean 

particle size. 500 Jlm thickness. with dicholotluorescein. Sigma) impregnated with 5% 

( w/v 1 boric acid. The plates were developed in diethyl ether/petroleum ether ( 40:60. v/v) 
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dried in a tume hood and then kept over concentrated aqueous ammonia for 10 min and 

subsequently redeveloped in aqueous ammonia/methanol/diethyl ether r2 : 15:83. v/v/vl. 

:\fta drying. the bands \vere located by viev.;ing under short ( 254 nm> and long ( 356 nm'l 

wa\'elength LV light t Spectraline. \todd E~F-240C. Spectronics Co .. Westbury. ~Yl. 

The separated bands: free fatty acids t hydrolyzed from sn-2 position of 1.2-diacyl-3-

phosphatide: R, = 0.72l. unhydrolyzed 2.3-diacyl-1-phosphatide ( Rf = 0.49). 

lysophosphatide t Rf = 0.08l. and small amounts of 1.2- and 2.3-diacylglycerols ( Rf = 

0.911 (Figure 3.61 were scraped off and I!Xtracted into chloroform/methanol t I : I. v/v). 

:\.fter removing a small sample for fany ac1d analysis. the unhydrolyzed 2.3-diacyl-1-

phosphatide fraction was subjected to porcine pancreatic lipase hydrolysis using the 

procedure described in Section 3.2.7.6 in order to obtain 2-monoacyl-1-phosphatide and 

free fatty acids t hydrolyzed from sn-3 position 1. :\II separated lipid fractions were 

.malyzed for the1r fatty acid composition by employing the gas chromatographic 

procedure described in Section 3.2.8 

3.2.7.6 Hydrolysis of enzymatically modified oils by pancreatic lipase 

Hydrolysis of purified oils as well as separated 2.3-diacyl-1-phosphatide by 

pancreatic lipase was carried out according to the method described by Christie ( 1982). 

Tris-hydrochloric buffer (5 mL: 1.0 M. pH S.m. 0.5 mL of calcium chloride (2.2%. w/v) 
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Figure 3.6 TLC chromatogram of products of phospholipase A1 hydrolysis 
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and 1.25 mL of sodium taurocholate t0.05C.C. w/\ 1 v . .-ere added to 25 mg of oil in a glass 

test wbe. The whole mixture was allowed to equilibriate at -lO"C in a wat~r bath for 1 min 

and ..;ub..;c:quentl~ 5.0 mg of porcine pancreatic lipase l EC. 3.1.1 .3. Sigma I were added to 

it. The mixture was then placed in a Gyratory water bath 'haker 1 ~lode! G76. :"ew 

Brunsv.-ick Scientific Co. lnc.1 at 200 rpm under nitrogen for 8 to I 0 min at -lo·>c_ Ethanol 

15 mL 1 was ;.tdded to stop the enzymatic hydrolysis follo\ved by addition of 5.0 mL of 6.0 

~ HCI. The hydrolytic products were extracted three umes with 50 mL of diethyl ether 

;.tnd ether layer \vas washed twice with distilled water and dried over anhydrous sodium 

sulphate . .-\fter removal of the solvent under vacuum at 30"C. the hydrolytic products 

\vere separatc:d on silica gel TLC plates 120 x 20 em: 60 A mean pore diameter. 2-25 ~m 

mean particle size. 500 ~m thickness. with dichlorotluorescem. Sigma1 impregnated with 

sec 1 v.A 1 boric add. The plates were developed using hexane/diethyl l!ther/acetlc acid 

-0:30: I. v/\·iv 1. A.fter drying. the bands were located by vit!wmg under short t 25-l nm 1 

and long t356 nm 1 wavelength CV lights 1 Spectraline. ~ode! E:"iF-2-lOC. Spectronics 

Co .. Westbury. ~Yl. The bands were scraped off and their lipids extracted into 

chlorofonn/methanol (I: I . v/v) or diethyl ether and subsequently used for fatty acid 

analysis by the gas chromatographic procedure described in Section 3.2.8 . 
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3.2.8 Analysis of fau~- acid composition of lipids 

3.2.8.1 Preparation of fatty acid methyl esters ( FA\lEs l 

Fan~ a~.:id ~.:omposition of lipids was Jetermined followmg convl.!rsion to methyl 

6ters. About 15 mg of each oil was weighed into a 6 mL well-cleaned Tetlon-lined . 

..;cre\v capped ~.:oni~.:al viaL The internal standard 1250 ngl I 001-11 chloroform. methyl 

tricosanoate. C~1 11 l \Vas added to the vial and the soh<ent in the oil-internal standard 

mixture \Vas e\·aporated under a stream of nitrogen . Transmethylation reagent l 2 mL. 

freshly prepared 6 mL of concentrated sulphuric acid made up to I 00 mL with spectral 

grade methanol and 15 mg of hydroquinone as an antioxidant l was added to the sample 

vial ;.tnJ mixed by vortexing. The mixture was incubated overnight at 60''C and 

subsequc!ntly cooled 1Wanasundara and Shahidi. 19951. Distilled water (I mLl was added 

to the mixture after thorough mixing. and it was extracted three times with 1.5 mL of 

pesticide-grade he:\ane . A few crystals of hydroquinone were added to each vial prior to 

c!Xtraction with hexane. Hexane layers were separated. combined and transferred to a 

clean tube and then washed two times with 1.5 mL of distilled water. ln the first wash. the 

aqueous layer was removed and in the second wash. the hexane layer was separated and 

c!vaporated under a stream of nitrogen. Fatty acid methyl esters were then dissolved in 

mL of carbon disulphide and used for gas chromatographic analysis l see below). 
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3.2.8.2 Analysis of fatty acid methyl esters (FAMEs) by gas chromatography \ GC l 

.-\ H~\\ ktt Packard 5890 Series II gas chromatograph t He\vlett PJckard. Toronto. 

0:'\ 1 ~4uipp~J with a SCPELCOW.-\X-1 0 column t0.25 mm diameter. 31) m length. 0 .25 

~m film thickness: Supelco Canada Ltd .. Oakville. ON) was used for analyzing F.-\.\[Es . 

The oven temperature was initially set at 220°C for I 0.25 min and then ramped to 2~0''C 

Jt .)0 ''C/min ;1nd then held there for 9 min. The injector and detector t tlame ionization. 

FID 1 temperatures were both at 270''C. t•Hp helium was used as a carrier gas t 15 mU 

min 1. HP 3365 Series II ChemStation software (Hewlett Packard. Toronto. ON l \s.;as used 

for Jata handling. The F.-\~IEs were tentatively identified by comparison of their 

retention times with those of authemic standard mixtures (GLC-~61: ~u-Check 1. The 

area under each peak wa.s calculah!d on a weight percentage basis ustng methvl 

tricosanoate < c~_. q 1 as an internal standard. 

3.2.9 Assessment of oxidative stability of oils by accelerated oxidation methods 

Comparison of the oxidative stability of enzymatically modified oils as well as 

unmodified oils was carried out under SchaaJ-oven test conditions at 60°C. It is generally 

accepted that each day t 2-t h l of storage of oils under Schaa1-oven test conditions at 60°C 

is equivalent to one month of storage at ambient temperatures (Evans et tll . . 1973: .-\bou

Gharbia et al .. 1996). 



The specifications of the c::<.periments carried out under Schaal oven test 

conditions were as follows. Each oilt1.8 g!. in triplicate. \Vas placed in test tubes 1 10 mm 

Jiametc:r and 12 em height> and >\toreJ in a forced-air oven tTheko. \.1(1Lk l 2. Prectsion 

Scientific Co .. Chicago. lL1 at 60''C. To estimate oxidative stability by various methods 

1 conjugated dienes: Section 3.2.9.1. 2-thiobarbituric acid reacttve substances value: 

Section 3.2.6.5. headspace volatiles: Section 3.2.9.3 and 1H :'\\.-tR: Section 3.2. 101. 

samples were removed periodically at 0. 6. 12. 2~. ~8. 72 ;.tnd 96 h from the o\·en. cooled 

to room temperature. tlushed with nitrogen for 30 s. capped and storeJ at -20''C until 

analyzed t usually w·ithin 15 days l. 

3.2.9.1 Determination of conjugated dienes t CD) 

Conjugated Jiene values of oil samples was measured by the mt:thod of ll.."PAC 

t 1987 L Oil samples 10.02-0.04 gl were weighed into 25 mL volumetric tlask. dissolved in 

isooctane 1 2.2A-trimethylpentane) and made up to the mark with the same solvent. The 

solution was thoroughly mixed and the absorbance read at 23~ nm usmg a He\\·lett 

Packard diode array spectrophotometer (Model 8452.-\. Hewlett Packard Co .. Missisauga. 

ON). Pure isooctane was used as the reference. Conjugated diene value was calculated as: 

CD= A I {C X d) 

where A = absorbance of the solution at 234 nm. c = concentration of the solution tn 

gil 00 ml of solution and d = length of the cell (em). 



3.2.9.2 Determination of the 2-thiobarbituric acid reactive substances tTBARS) 

TB.-\RS of oil ~amples wa..-.; mea..-;ured by the method of American Oil Chemists' 

Society t.-\OCS. 1990: \lcthod Cd 19-901 as described in Section 3.2.6.5. 

3.2.9.3 Static headspace gas chromatographic analysis 

.-\ Perkin-Elmer 8500 gas ~hromatograph and HS-6 headspace sampler 1 Perkin-Elmer 

Corp .. \lontreal. PQJ wt!re used for analysis of volaules produced dunng storage of otl 

samples. The volatiks m the headspace of oxidized oils tobtained from the accelerated 

oxidation method l \Vere separated using a high polarity Supelcowax-1 0 fused silica 

~apillary column t0.32 mm internal diameter. 30 m length. 0.10 !J.m film thickness: 

Supelco Canada Ltd .. Oakville. ONL LHP helium was the carrier gas employed at an 

inlet column pressure or 17.5 psig with a split ratio of 7: I. The oven temperature \Vas 

maintained at -+O''C for 5 min and then ramped to 200"C at 20',C/min and held there for 5 

min. The injector and tlame ionization detector 1 FIDl temperatures were adjusted to 

280',C and held at this temperature throughout the analysis. 

For headspace 1 HS) analysis. 0 .20 g of each oil was transferred to a 5 mL 

headspace vial !Chromawgraphic Specialties lnc .. Brockville. ON). The vials were 

capped with Tet1on-lined septa. crimped and then frozen and kept at -20"C unril used. To 

avoid heat shock after removal of sample vials from storage. frozen vials were tempered 

at room temperature for 10 min and then preheated in the HS-6 magazine assembly at 



90' 'C for 10 min l!quilibr:Hion period. Pressunzation time of the \·ial w~s 6 s. and the 

\ 'l)lumt! of the vapour phase drawn was Jpproximately 1.5 mL. Chromatograph peak areas 

Wl!re 1!\.pres.;eJ as integrator count units . Individual \Oiatik compounds were tentatively 

identifit:d b~ LOmparison of their retention times v.;ith tho.;e nf cl)mmerc iallv a\ailable 

-.tandards. Quantitative determination of dominant volatiles 1 mamly hexanal and 

propanal 1 was accomplished using 2-heptanone as an internal standard 1 Shahidi and Pegg. 

!994). 

3.2.10 Proton 1 
1H) nuclear magnetic resonance I~MR> spectroscopy 

1 H ~\lR spectra of the oil samples. subjected to accelerared O:'{idation. were 

recorded using a 300 :\1Hz nuclear magnetic resonance spectrometer 1 GE-G~ 300: 

Gt!neral Ekctric Inc .. Fremont. C.-\1 m CDC!; solvent. Tetramethylsllane •T\lS1 \'' as used 

as the mternal standard. SLliUtiOns comaming 15 mg oil in CDCJ; t0.3 mL1 were placed in 

S:'VlR tubes 1 ='1o . 509-CP: 5 mm outer diameter. 178 mm length: ~orell . Inc .. Landisville. 

~1 l and the spectra were recorded. Chemical shifts 1 o. ppm l were reported relative to 

T\--15. Data were analyzed using ~t:TS software 1 ='1MR Data Processing Program . .-\cron 

~:'VIR Inc .. Fremont. CAl. The total number of protons under each peak was calculated on 

the basis of integration of methylene protons of the TAG backbone. 
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3.2.11 Determination of double bond index (OBI) 

Thl! ratty acid composition of oxidized and unoxidized oils \vas determined by gas 

~hrom;.Itography as desaibed in Section 3.2.8. For determination of double bond index 

1 DBll. the number of double bonds contained in each fatty acid was multipl ied by its 

respe~tive mole pen.:l!ntage and summed for all fatty acids detected. The mean number of 

Jouble bonJs per fatty acyl chain was then expressed as the OBI (Wagner eta/.. 1994 l. 

3.2.12 Determination of methylene bridge index (MBI) 

The ml!an number nf his-allylic methylene bridge posmon~ of fatty acid 

constituents. expressed as methylene bridge index ( MB[). was calculated by multiplying 

the number of his-allylic methylene bridge positions contained in each fatty acid species 

by its respecti\·e mole percentage and ·mmmed for all fatty acids present ( Vartak et a/.. 

l997l. 

3.2.13 Statistical analyses 

:\11 experiments. except RSM. in this study were replicated at ieast thre!e times. 

Data are reported as mean ±standard deviation (SO). RSM used a 3-factor. 3-level. face

centred cube design with triplicate determinations at the centre point. Section 3.2.5 

explains data analysis carried out for the optimization study using RSM. Analysis of 

variance L-\~OYAl was performed and significant differences among mean values were 
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determined using Tukey·s studentized test at P < 0 .005. 0.05 or 0.\ and employing 

A~ OVA and Tukey· s procedures of statistical analys1s ..;ystem 1 S -\S Institute Inc. 11.)90 1. 

Simple linear .. md multiple regression analyses \vere also performed u~i ng the ..;arne 

software in the general linear model (GLMl and response surface regress1on 1 RSREG1 

procedures. respectively. 



CHAPTER~ 

RESCL TS .-\~D DISCLSSIO~ 

~.1 Preparation of docosahexaenoic acid 1 DH.-\) concentrate from algal oil via urea 

complexation 

.-\ docosahexaenoic acid ( DHA) concentrate was obtained by urea complexation of 

algal oil fatty acids. l'rea complexation is a well-established technique for elimination of 

saturated and monounsaturated fatty acids (Ratnayake n al.. 1988 )_ The simplest and most 

efficient technique for obtaining polyunsa£Urated fatty acid ( Pl'FA) concentrates in the form 

of free fatty acids is urea complexation 1Wanasundara and Shahidi. 1999 l. lnitially. the 

triacylglycerols 1T.-\G) of the algal oil are split into their constituent fatty actds by alkaline 

hydrolysis using alcoholic KOH or ~aOH and unsaponifiables such as sterols. vitamins A 

and D as well as other non-TAG components are removed from the mixture. The free fatty 

acids ( FF.--\) are then mixed with an alcoholic (ethanol or methanol) solution of urea. The 

saturated and monounsaturated fatty acids are easily complexed with urea and crystallize 

out on cooling and may subsequently be removed by filtration. The liquid or non-urea 

complexed fraction ( ~UCF) is enriched with PlJF A. 

Although urea alone crystallizes in a tightly packed tetragonal form 1 Figure ~ - 1 l. X

ray studies of urea complexes have shown them to be hexagonal in shape 1 Swern. 1964). ln 

forming the complex. urea molecules build up the structural framework in a helical manner. 

Urea molecules bond £Ogether \'ia hydrogen bonding (Hayes et a! .. 2000). The included 

compounds occupy the free space inside the hexagonal channels and are held there via van 
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Figure 4 .1 Formation of urea crystals in the presence of long-chain fatty acids 
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der Waals· forces. London dispersion forces or induced electrostatic attractions. While 

straight-chain saturated fatty acids with six carbon atoms or more are readily compkxed. the 

presence of double bonds in the carbon chain increases the bulk of the molecule and reduces 

the likelihood of its complexation with urea ( Swem. 1964). Monounsaturated fatty acids are 

more readily complexed as compared to diunsaturated fatty acids. which. in tum. are more 

easily complexed than triunsarurated fatty acids. Therefore. the formation of fatty acid-urea 

adducts depends on the degree of unsaturation of fatty acids involved. 

Algal oil in this work was extracted from the marine microalga Cnptlzecodinium 

colznii. and contained approximately 409c (w/wl DHA !Haumann. 1998: Jiang and Chen. 

20001. It is a yellow-orange. free tlowing oil which contains about 95% TAG 1 Haumann. 

1998 l. Algal oil may be concentrated in the form of TAG. as free fatty acids. or as the 

simple alkyl esters. ~lost of the algal oil products sold are in the TAG form ( Haumann. 

1998 l. Algal oils are abundant in DHA and may be used as a raw material for preparation of 

DHA concentrates. Of the several procedures considered for concentration of Pl"FA. urea 

complexation is one of the promising methods as it allows handling of large quantities of 

material. £n this study. urea complexation of algal oil was carried out in order to produce a 

DHA concentrate. 

The urea complexation could be performed either on the free acids or their alkyl 

esters. ln this investigation. the free fatty acids were preferred due to their better solubility in 

the urea/ethanol solution as compared to that of their corresponding methyl or ethyl esters. 

This is important as it minimizes the amount of solvent (ethanol) required for the process. 
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The int1uence of the ratio 1 \1,;/v.; l of urea to fatty acid on the yield 1 Wi: 1 of DHA in the 

concentrate \l,;as studied. In this particular set of experiments the weight of fatty acids v.·as 

kept ~onstant at I 0 g. but the \Veight of urea was varied. The urea complex was allowed to 

crystallize at ~"C for 2~ h. The concentration of DHA reached a maximum at an 

approximate urea to fatty acid ratio of 3: I 1 Figure ~.2) . When an exces~ urea was used. 

more of the DHA wa.s complexed and found its way into the UCF. Thus. in this study the 

urea/fatty acid weight ratio was kept at 3: I 1 w/w ). Haagsma et a/. 1 19821 reported that the 

efficiency of urea-adduct formation reached .1 ma.'\imum when the urea/fatty acid ratio was 

about 3: I for cod liver oil fatty acid methyl esters. A similar conclusion was reached by 

Ratnayake ~t tll. 1 1988) using menhaden oil fatty acids. 

The fatty acid compositions of the original algal oil and that of the urea complexing 

and nonurea complexing fractions produced from it are given in Table ~. 1 . The major 

saturated fatty acids present in the algal oil were 1~ :0 ( 15.0% ) and 16:0 19.0% 1. However. 

small amounts of I 0:0. 12:0 and 18:0 were also present. As a result of urea adduct 

formation. total saturated fatty acids were decreased from 25.9 to 1.1 'k . Thus. most of the 

saturated fatty acids. except small amoums of I 0:0. 12:0 and 14:0 . were removed 1 Table 

~.1 ). ~onounsaturated fatty acids 1 MUF A> found in the original algal oil were I~: l. 16: I 

and 18: I. The total content of MCFA in the product was decreased from 21 .3 to 0 .6% 

following the urea crystallization process. PUFA present in algal oil were 18:2. 22:5 and 

22:6. Total Pl.; 'FA was increased from ~8.9 to 98.2% in the NUCF. DHA was enriched from 
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Effect of urea/fatty acid ratio on percentage ( '7c) of DHA in the 
concentrate after urea complexation 



100 

80 

-~ 
- 60 c 
l: 
Q 

40 

20 

1 2 3 4 

Urea to fatty acid weight ratio 



152 

Table -U Fatty acid profile of algal oil and its urea complexing ( UCF) and non urea 

complexing CNVCF) fractions obtained by urea complexation 

Fatty acid Algal oil :-.l't:CP 

10:0 0.58 ±0.06 OA7 ±0.04 

12:0 1.12 ± 0.05 0.51 ±0.02 

14:0 14.9 ± 0.07 0.13 ± 0.02 

1-t: l 0.20 ± 0.03 0.16 ±0.10 

16:0 9.05 ±0.12 ~n-= 

16:1 2.20::0.08 0.25 ± 0.01 

18:0 0.20 ±0.01 ND.: 

18: I 18.9 ± 0.32 0.22 ±0.01 

18:2 1.01 ± 0.02 0.65 ±0.03 

22:5 0.51 ± 0.05 0.41 ± 0.01 

22:6w3 47.4±0.15 97.1 ±0.02 

Saturated fatty acids 25.87 1.1 l 

MUFAJ 21.32 0.63 

PUFAe 48.94 98.16 

Yield ( wt '7c) 32.5 

DHA recovery(%) 66.5 

Results are mean of triplicate determinations from different experiments. 
aNon-urea complexing fraction 
~rea complexing fraction 
-=Not detected 
dMonounsarurated fatty acids 
epolyunsaturated fatty acids 

LTF' 

1.15 ± 0.02 

7.67 ± 0.22 

17.9 ± 0.21 

0.30 ± 0.04 

6.85 ±0.05 

3.71 ± 0.02 

0.17 ±0.02 

36.9 ±0.09 

1.14 ± 0.01 

0.67 ±0.07 

23.1 ± 0.35 

26.02 

40.92 

32.92 

52.0 

25.3 
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.,n .-+ to 97. l CC and the process yidd was 32.5ctc with respect to the weight of the original oil. 

Haagsma er a/. 1 19821 have reponed l OO'k recovery of DHA from ~TCF. Among the 

saturated and monounsaturated fatty acids. the longer-chain fatty acids complexed with urea 

more readily than shorter ~hain fatty acids. Ackman er al. ( 1988) observed a similar 

behaviour with fatty acids of redfish oil. Although ~CCF contained 97.1% DHA. a 

considerable proportion of it ( 23. 1 c;·c) was invariably complexed with urea and ended up in 

the CCF. The recovery dficiency of DHA in ~UCF was 66.59C of that present in the 

original algal oilcTable -+.1 ). 

Recently. urea complexation was used to prepare ro-3 Pl:'FA concentrates from seal 

blubber oil < Wanasundara and Shahidi. 1999). Among the major ro-3 Pl.JFAs. DHA was 

found almost exclusively <65.29CI in the ~CCF of seal blubber oil under selected 

t!Xperimental conditions. Crea complt!xation of seal blubber oil. under optimum process 

conditions. gave a total PCFA content of 92.3'k in the ~'l.TCF. However. it was difficult to 

remove all of the saturated fatty acids in order to obtain a I 00% PUF A concentrate. 

Ratnayake er ui. < 1988) have also reponed that complete removal of saturated fatty acids by 

urea complexation may be impossible since some of the shorter chain saturated fatty acids 

do not complex with urea during the crystallization process. The present results also 

confirm that some of the shorter chain saturated fatty acids ( 10:0. 12:0 and 14:0) could not 

be removed completely from algal oil by this process (Table 4 .1 ). 

In urea complexation. the complexed crystals are very stable and hence filtration at 

. the very low temperatures used for solvent crystallization of fauy acids is not required 
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1 Anonymous. 1986 l. This method is also favoured by many researchers because 

<.:ompkxation depends upon the configuration of fatty acid moieties governed by the 

presence of multiple double bonds rather than pure physical properties such as solubility or 

melting point. 

4.2 Enzymatic incorporation of c.o3 fatty acids (EPA and DHA) into borage oil 

t80) and evening primrose oil tEPO) 

-1.2.1 Enzyme screening 

Six commercial enzymes from Candida antarctica. Mucor mielzl'i. Pseudomonas 

sp .. Candidtl rugosa. A.spergillus niger and Tlzermom_vces /anuginosus were screened for 

their ability to incorporate DHA into borage oil (80) and evening primrose oil t EPOl at 

37vC in hexane 1 Table -L! ). These lipases catalyzed DHA incorporation into 80 to various 

extents. The t.h!gree of DHA incorporation attained with various lipases was in the order of 

Candida antarctica > Pseudomonas sp. > Mucor miehei > :\spergillus 11iger > Candida 

mgosa > Tlzermomyces lanuginosus. The lipases from Aspergillus niger. Candida mgosa 

and Themzomyces lanuginosus were less effective in this regard. The lipa"e from Candida 

antarctica gave the highest degree of DHA incorporation into 80 ( 25.sq.. after 2-+ h). Thus. 

this lipase was selected for subsequent experiments to detennine optimal acidolysis 

conditions. ln EPO. the degree of DHA incorporation with various lipases was in the order 

of Candida antarctica > Pseudomonas sp. > Mucor miehei >Aspergillus niger > Candida 

rugosa > Tlzermomyces lanuginosus. The lipases form Candida antarctica. Mucor miehei 



Table 4.2 Effect of differentlipases on DHA incorporation(%) inro borage (80) and evening primrose oils (EPO) 

Enzyme Commercial code 

Carulida tmtarctica Novoz ym-4 35 

Muc:or miehei Lipozyme-IM 

Pl·eudomorw.\· lp. PS-30 

Aspergillus 11iger AP-12 

Candida rugosa AY-30 

Themwmycel' lmmgi11osuJ Novozym-6 77BG 

Enzyme activity 

( lJ) 

554 

13,613 

11,936 

Xl42 

3M,707 

765X 

DHA incorporation (%) 

in BOa 

25.M ± 0.1 

13.1 ± 1.2 

16.X ±0.6 

2.73 ± 0.5 

2.04 ±0.2 

I. 72 ± ().4 

DHA incorporation(%) 

in EPO'' 

2X.7 ± 0.5 

20.1 ± 0.4 

24.2 ± l..l 

14.0 ± O.X 

7.5] ±0.2 

2.62 ± 0.4 

a.rhe reaction mixture contained 5(K) mg oil, 194 mg DHA. 500 units of enzyme and 3 mL hexane. The reaction mixture was 
incubated at 37.,C for 24 h in an orbital shaking water hath at 250 rpm. f{csulls arc mean of triplicate determinations from di fferent 
experiments. 

-u. 
VI 
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and Pseudonwnas sp. and. to a limited extent. Iipases from Aspergillus niger and Candida 

rugosa incorporated DHA into EPO. However. lipa..-;e from Tlzemumzvce.~ lwwginosus \vas 

not d'ficient in incorporating DHA into EPO. Lipase from Candida anrarctic:a was used 

further in this study because it afforded the highest DHA incorporation into EPO t28. 7ac. 

after 24 h 1. Since Iipases from Candida amarcrica and .Hucor miehei \vere used in the 

immobilized form. it should be noted that their activity might have been affected by the 

immobilization process. 

In another ,rudy. EPA was incorporated into 80 and EPO usmg a variety of 

commercial lipases. The degree of EPA incorporation tn both oils was in the order of 

Pseudomonas .'ip. > Jfucor miehei > Candida antarctica > A.sper~illus ni.~er > Candida 

ru~o.\·u > Themwmn:es lanuginosus tTable 4.3 ). The results showed that lipases from 

Pseudomonas sp.. .'vfucor miehei and Cmzdida wzrarctica were highly effective in 

incorporating EPA into the oils examined. Since the acidolysis of both oils with EPA was 

best performed with lipase from Pseudomonas sp .. this enzyme was chosen for subsequent 

experiments. In another study. incorporation of EPA+DHA in 80 and EPO was also 

studied using the above lipases. The degree of incorporation of EPA+DHA followed the 

same order as that observed for EPA-enriched oils \Table 4.3) . The lipase from 

Pseudomonas sp. was found to be highly effective in incorporating EPA+DHA into 80 and 

EPO. Therefore. this lipase was selected for further experimentation. 



Table4.3 Effect of diffcrentlipascs on EPA incorporation ((/h ) muJ EPA+DIIA incorporation (t~· l into borage (BOl und 
evening primrose oils (EPO) 

Enzyme 

Ca11dida tmturctit.:tl 

Mu£·or miehei 

P.veudomo11m· .\p. 

Aspergillus nigt>r 

Ca11dida mgo.w 

Tllemwmyas lmmgino.\'U.\' 

EPA incorporation 
t(-*~> in so~ 

21.0 ± O.M 

23.3 ± 2. I 

28.7 ± 0.6 

14.1 ± 0 .6 

12.0 ± 1.5 

6.81 ±2.1 

EPA incorporation 
( t~l) in EPOa 

22.9 ± I .9 

25.6 ± 0.7 

30.7 ± 0.2 

13.0 ± 2.4 

10.7±1.1 

M.51 ± 2.<J 

EPA+ DIIA incorporation 
(%)in BO" 

IM.2 ±lU 

21.9± 1.7 

31.7 ±0.9 

14.6 ± 0.3 

12.h ± 0 .9 

IO.K ± O.K 

EPA+ DIIA incoq)oration 
(%) in EPOh 

16.9 ± 0.5 

22.4 ± 1.0 

32.7 ± 0.5 

15 .. ~±0.7 

13.X ± lU 

II..'\± 1.0 

wrhe reaction mixture contained 500 mg oil, 17M mg EPA, 500 units of enzyme ami 3 mi. hexane. The reuL·tion mixture w<ts 
incubated at 37"C for 24 h in an orbital shaking water hath ill 250 rpm. Results arc mean of triplicutc determinations from diffcn.:nt 
experiments 

"rhe reaction mixture contained 500 mg oil, 8<) mg EPA, 'J7 mg DltA. 500 units of enzyme and 3 mL hexane. The reaction 
mixture was incubated at 3711C for 24 h in an orbital shaking water hath ill 250 rpm. Results arc mean of triplicate determinations 
from different experiments 

,_, 
--.1 
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~.2.2 Effect of enzyme load 

Th~ effect of enzym~ load t lipa..-i~ from Candida antarctica) on the incorporation of 

DHA t Cf- 1 into acylglycerols of 80 and EPO is shown in Figure 4.3. Increasing the amount 

of enzyme in the mixture increased the extent of DHA incorporation. but a signiticant 

increase was not observed 1 p > 0.05) when the enzyme was present at a level greater than 

I 00-150 units. Thus. I 00-150 units of enzyme were sufficient to saturate the reacrion 

system in terms of the enzyme load. Figure 4.-l shows the effect of enzyme content t lipase 

from Pseudomonas sp. l on EPA incorporation into BO and EPO. As the amount of enzyme 

wa..s increased. incorponuion of EPA was increased. The highest incorporation t28.1 C:C EPA 

in BO and 27.-lCC EPA in EPOl was obtained with 150-250 units of enzyme. Akoh et al. 

t 1996! have also reponed increased incorporation of EPA into EPO with increasing enzyme 

load t SP-B5 from Cmdida ancarctica 1. Akoh and Sista < 1995) used an immobilized 

nonspecific lipase from Candida antarctica to incorporate EPA into BO. Their results 

showed that the highest incorporation ( 31 '70 EPA) was obtained with 20% t w/w of 

substrates) lipase. The effect of enzyme load <lipase from Pseudomonas sp.) on EPA+DHA 

incorporation in oils is depicted in Figure 4.5. A high incorporation of EPA+DHA was 

observed at an early stage of the reaction. Also increasing the enzyme load increased the 

degree of incorporation of EPA+DHA into the oils tested. 

~.2.3 Effect of temperature 

Temperature is a well known parameter that affects enzyme activity. The rate of 



Figure 4.3 
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Effect of enzyme load on the incorporation of DHA into borage (A l and 
evening primrose oils (B) . The reaction mixture contained 297-300 mg oil. 
120 mg DHA. 30-200 units of Candida antarctica lipase preparation and 3 
mL hexane. The reaction mixture was incubated at 37°C for 24 h m an 
orbital shaking water bath at 250 rpm. 



A B 

30 30 

- -fl. ~ 0 - -c c 
0 0 
;: ;: 
as ta 
~ 20 ... 20 0 0 
0. Q. ... ... 
0 0 
u u 
c c 

c c 
X J: 
0 10 c 10 

0 ~~~-~----'--~--~~ 0'--.....L---"-_J,_--L--'------L--'-----L-I 
0 50 100 150 200 0 50 100 150 200 

Amount of enzyme (units) Amount of enzyme (units) 



Figure 4.4 
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Effect of enzyme load on the incorporation of EPA imo borage 1 Al and 
evening primrose oils (8). The reaction mixture contained 297-300 mg oil. 
115 mg EPA. 50-450 units of Pseudomonas sp. lipase preparation and 3 
mL hexane. The reaction mixture was incubated at 37°C for 24 h in an 
orbital shaking water bath at 250 rpm. 
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Figure 4.5 
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Effect of enzyme load on the incorporation of EPA+DHA into borage (A 1 

and evening primrose oils <8). The reaction mixture contained 297-300 
mg oil. 54 mg EPA. 58 mg DHA. 50-450 units of Pseudomonas sp. lipase 
preparation and 3 mL hexane. The reaction mixture was incubated at 37°C 
for 24 h in an orbital shaking water bath at 250 rpm. 
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l!nzyme activity does increasl! as the ~nvironment heats up. until a maximum rate is reached. 

That rate is the optimum temperature for a given enzyme. When temp\!rature increases 

further. the reaction rate plummets. The reason is that hydrogen bonds and other weak 

attractions holding the enzyme in its three-dimensional shape are sensitive to temperature 

changes in its surroundings. Increased temperature increases the kinetic energy of the 

enzyme's molecular framework: and molecules in the surroundings also collide more 

frequently with the enzyme itself. At some point. the disturbances are so great that 

denaturation occurs. The effect of temperature on lipase-mediated acidolysis of oils with 

fatty acids has been investigated !Akoh and Huang. 1995: Ju er a/ .. 1998). Temperature 

effects on lipase-catalysed ester synthesis were reported to be dependent on the reaction 

medium. enzyme source and substrate !Welsh et al .. 1989\. 

Figure ~.6 illustrates the effect of temperature on lipase-catalyzed acidolysis of 80 

and EPO with DHA by an immobilized Candida amarctica lipase. The temperature range 

tested \Vas 20 to 55°C. DHA incorporation increased as the temperature was increased up to 

3T'C and -'S''C in BO and EPO. respectively. When the temperature increased further. the 

degree of DHA incorporation remained constant. The optimum temperature range for this 

reaction was 37-55'1C. Thus. higher temperatures. up to 55°C. seemed more suitable for 

better performance of Candida antarctica lipase. This tinding lends further support to those 

reported by Akoh and Huang ( 1995). The higher temperature optimum for Candida 

antarctica enzyme was probably partly due to the fact that immobilization conferred greater 

thermostability on this enzyme. Kosugi and Azuma ( 1994) used an immobilized lipase from 
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Effect of temperature on DHA incorporation into borage (A) and evening 
primrose oils (8). The reaction mixture contained 297-300 mg oil. 120 mg 
DHA. 150 units of Candida antarctica lipase and 3 mL hexane. The 
reaction mixture was incubated at different temperatures ( 20-55°C) for 24 
h in an orbital shaking water bath at 250 rpm. 
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Cmdida antarctica for production of pure TAG from EPA or DHA with glycerol. The rate 

of TAG formation was reported to be faster at 60 •>c even though the TAG yield was the 

same at ~0 and 60 •>c . 

The effect of temperature on acidolysis of 80 and EPO with EPA by lipase from 

Pseudomonas sp. \Va..'i also studied (Figure ~ . 7 l. Reaction temperatures \vere varied from 20 

to 55'
1
C. It was found that higher temperatures l45-55'1C) were more suitable for the 

reaction. In another experiment. the effect of temperature on EPA+DHA incorporation in 

the oils by Pseudomonas sp. lipa..-;e \Vas examined and the results are shmvn in Figure ~.8 . 

The EPA+DHA incorporation by Pseudomonas sp. lipase was monitored at temperatures 

ranging from 20 to 55''C. The Pseudomonas lipase-catalyzed acidolysis reactions exhibited 

a maximum reaction rate at -+5-50''C. Ju er al. ( 1998) studied the effect of temperature on 

reaction rate q.Lmole w3 PL.FA/ time) of acidolysis of 80 with w3 PL.FA. The I:M-60 I from 

.Huc:vr mielzei 1 lipase-~atalysed acidolysis reaction showed a maximum rate at 50'1C. 

4.2.4 Time course 

Table ~.4 shows the changes in fatty acid composition of 80 with time during the 

course of acidolysis with DHA. DHA was successfully incorporated into 80 using Candida 

antarctica lipase as the biocatalyst. After 24 h of incubation in hexane. 27.4st DHA was 

incorporated (Table 4.4). DHA incorporation increased as incubation time increased. up to 

24 h. Figure ~.9A shows the changes in fatty acid composition of 80 following Candida 

antarctica lipase-catalyzed acidolysis with DHA for up to 48 h. Predominant fatty acids 



Figure 4.7 
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Effect of temperature on EPA incorporation into borage 1 Al and evening 
primrose oils (8). The reaction mixture contained 297-300 mg oil. 115 mg 
EPA. 150 units of Pseudomonas sp. lipase and 3 mL hexane. The reaction 
mixture was incubated at different temperatures l20-55°C) for 24 h in an 
orbital shaking water bath at 250 rpm. 
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Figure 4 .8 
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Effect of temperature on EPA+DHA incorporation into borage (A) and 
evening primrose oils (B). The reaction mixture contained 297-300 mg oil. 
54 mg EPA. 58 mg DHA. 150 units of Pseudomonas sp. lipase and 3 mL 
hexane. The reaction mixture was incubated at different temperatures ( 20-
550C) for 24 h in an orbital shaking water bath at 250 rpm. 
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Tahlc 4.4 Fatly al:id wmposition of horagc oil (1~0) hdorc atu.J after lipase-L<llalyzcd addolysis with I>IIA'' 

F&~tly acid Duralion of acidolysis (II) 

0 I~ IH 2-l 

14:0 0.07 ± 0.02 0.07 ± 0 .0-t 0 .07 ± 0.()2 NJ>" 
16:0 lJ.60 ± 0.50 7. 10 ± 0 .20 7.07 ± 0 .20 ll.1>o ± o .. n 
16:1 0.20 ± 0.05 0. 16 ± 0 .05 0 . 16 ± 0.05 0. 17 ± 0 .23 
17:0 0.10 ± 0 .0 I Nl>" Nl>h Nl>1

' 

IK:O 3.50 ± 0.03 2.62 ± t).()2 2.< J2 ± 0.()2 2.55 ± 0 .50 
IH: I 15.5 ± 0.70 13.4 ± 0.42 11.5 ± <UO 11 .. ~±0. 21 

I H:2oil J7.H ± 1.10 JO.K ± 0.92 17.6 ±0.55 27.0 ± O.X2 

18:3oil 23.5 ± O.K5 IK.7 ± 0 .56 17.1 ±0.70 17.0 ± 0.50 

IK:3w3 0.21 ± 0.05 0.1 K ± 0 .07 0.17 ± O.OK 0 . 17 ± 0.06 

20:0 0.22 ± O.OK 0.20 ± 0 .0 I 0.17 ± 0 .02 0 . 17 ± 0.02 

20: I 4.20 ± 0 .10 .lOO ± 0 .0 I 3.00 ± 0 . 12 .lOlJ ± 0.0 I 

20:2 0.21 ± 0.05 NDh 0 .15 ± 0 .02 0.15 ± 0 .06 

22:0 0 . 15 ± 0 .07 ND" ND" 0. 12 ± 0.05 

22: I 2.35 ±0. 12 1.90 ± 0.10 I.K6 ± 0.05 I.KI±0.22 

24:1 1.50 ± 0.10 1.00 ± 0 .06 0 .53 ±0.16 NDio 

22:6w3 NOll 20.7 ± 0 .57 26.5 ± 0 .20 27.4 ± 0.10 

w3/htl Ratio 0.003 0.42 0 .59 0.62 

"The rcal:tion mixlurc wntainl!d .100 mg borage oil , 120 mg DHA. 150 unils ol Cwulitla tllllllrctica and J mi. hcx<mc. The 
reaction mixture was incubated at 37"C in an urhilal shaking walcr hlllh al 250 rvm. Experimental results arL' rucans of 
lriplkale dctcrminalions. 

hNol detected 

-::1' 
-..1 
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found in BO prior to the acidolysis reaction \\iere linoleic acid ( 37.8c-cl and GL\ ( 23 .5CJcl. 

in agreement \Vith values reported in the literature 1 Gunstone. 1992: .-\koh and Sista. 1995: 

Horrobin. 19921. .-\s the DHA incorporation increased. the propnrtion of monounsaturated. 

saturated and total cdJ fatty acids :L.-\ and GLAl decreased (Figure -J..9AI. However. the 

amount of GLA was decreased to a lesser extent 1 from 23.5 to 17 .OC"'c: after 24 h incubation). 

The maximum amount of DHA incorporation was 27.-J.Cc (after 24 hl. The moditied oil had 

an w.3/cdJ ratio of 0.42-0.62. This oil may prove to be nutritionally more favourable than 

unmoditied BO. Similar results from the reaction of BO and EPA ethyl ester were obtained 

with an immobilized Candida amarcrica at a substrate mole ratio of 1:3 ({J)3/cdJ of 0 .6-il 

1 Akoh and Sista. 1995 l. The changes in fatty actd protile of EPO after acidolysis with DHA 

are given in Table -l.5 . DHA was incorporated into EPO using the same enzyme. After 2-+ h 

reaction. the content of DHA incorporated into this oil was 25.2q.. The main fatty acid 

found in EPO before enzymatic moditication was LA ( 72.6q. l. The content of GLA found 

in this oil was 9 .12q.. The amounts of monounsaturated. saturated and total @ fatty acids 

decreased upon DHA incorporation into the oil cFigure 4.98). The moditied EPO had an 

w31cdJ ratio of 0 . 16-0A. 

Similarly. EPA was successfully incorporated into BO and EPO using nonspecific 

Pseudomonas sp. lipase and the changes in fatty acid composition with time are given in 

Tables -l.6 and -l. 7. respectively. After 2-l h reaction. the amounts of EPA incorporated into 

80 and EPO were 26.8 and 25.2q.. respectively. The modified 80 and EPO had an 0}3/o:/J 

ratios of 0. 18-0.66 and 0.14-0.40. respectively. Previously. Ak.oh and Sista ( 1995) modified 



Figure ~.9 Changes in total contents of Ol3. c.tl6. saturated and monounsaturated fatty 
acids of borage (A) and evening primrose oils (8) during lipase-catalysed 
acidolysis with DHA. The reaction mixture contained 297-300 mg oiL 120 
mg DHA. 150 uuits of Candida antarctica lipase and 3 mL hexane. The 
reaction mixture was incubated at 37°C in an orbital shaking water bath at 
250 rpm. 
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Tahlc 4.5 

Fatly add 

14:0 
16:0 
16:1 
17:0 
IM:O 
IX: I 
I M:2<.00 
I X:3<.00 
IH:3ro3 
20:0 
20: I 
20:2 
22:0 
22:1 
22:6wJ 

ro.l/<.00 Ratio 

Fatty add composition of evening primro~e oil (EPO) hcfore and after lipasc-Gttalyzcd ;u.:idoly~is 
with DBAa 

l>mation of acidolysis I h) 

() 12 IX 24 

0.04 ± 0.0 I 0.04 ± 0.02 ND1
' ND" 

6. 17 ± 0.09 5.0J ± 0. I 0 -l. 7J ± 0.20 4.70 ± 0.50 
0.()4 ± 0.02 ND., Nl>h Nl>" 
O.OX ± 0.01 ND" NDh ND., 

1.75±0. 12 1.]1 ±0.51 0. 7-l ± 0.21 OHJ ± 0.07 
H.65 ± 0.56 7.K9 ± (UO 5.12±0.61 4.21 ± 0.50 
72.6 ± 0.91 63.7 ± 1.72 60.3 ± 1.52 54.3 ± 1.26 
9.12±0.3K X.'J5 ± 0.65 7.'>2 ± 1.00 7.6 ± 0.45 
0.16 ±0.03 0.15 ± 0.()4 0. 11 ± 0.01 ND11 

0.34 ± 0.()5 0.25 ± O.OJ NDh Nl>h 

0.29 ± 0.07 0.22 ± 0.02 0.21 ± 0.0.~ NDh 

0.05 ±0.05 ND., ND" ND11 

0.14 ± 0.05 NDh Nl>1
' 0 .1 I ± 0.()4 

0. 12 ±0.01 NDh Nl>h ND" 
ND11 11.7 ± O.X2 20.5 ± 0.75 25.2 ± 0. 10 

0.001 0.16 (UO 0.40 

a.l'hc reaction mixture nmtaincd 2lJ7 mg evening primrose oil , 120 mg DJIA, 150 units of Cmulitla mllarctica and J mi. 
hexane. The reaction mixture was incuhatcd at .H"< · in an orhital shaking water hath at 250 rpm. Experimental results an: 
means of triplkate determinations. 

"Not detected 

-
~ 



Tahlc 4.6 Fally arid composition of homgc oil (BOl hcfore and after lipase-catalyzed aridoly~is with EPA'' 

Fally &acid 

14:0 
16:0 

16: I 
17:0 
IX:O 
IX: I 
IX:2l.OO 
IM:3l.OO 
IM:3oo3 
20:0 
20: 1 
20:2 
20:5w3 
22:0 
22:1 
24: I 

w3/(if) Ratio 

0 

0.07 ±0.02 
9 .60 ± 0.50 

0.20 ± 0.05 
0.10 ± 0.01 
3.50 ± 0.03 
15.5 ± 0.70 
37.X ± 1.10 
2.l5 ± O.X5 
0 .21 ± 0 .05 
0 .22 ± O.OX 
4.20 ± 0.10 
0 .21 ±0.05 

ND" 
0. 15 ± 0.07 
2.35±0.12 
1.50 ± 0.10 

().()()) 

Duration of acidolysi~ (h) 

12 IX 

O.t).l ± 0.0 I 0.05 ± 0 .03 
7.07 ± 0.52 6.4'J ±lUll 

0.1 (l ± 0.05 0.12 ± 0 .05 
NDh NDh 

.U2 ±0.1-l 2.9X ±0.54 
1-l.O ± 0.53 12.3 ± 0 .25 

27.0 ± 0.'>2 26.o ± 1.27 
17.0 ± 0 .34 15.3 ±0.55 
0 . 19 ± 0.07 0 .17 ± 0 .05 
0 .2-l ± O.OX 0.23 ± 0.06 
3.19 ± 0.21 .111±0.42 

ND" 0 . 15 ± O.OX 
7.9X ± 0.25 25.5 ± 1.40 
0. I 0 ± 0 .02 0.16 ± 0.07 
2.19 ± 0.5X 2.10 ± 0 .23 
I..H ± 0.63 1.21 ± 0 . 11 

0.1 X O.fll 
------------------------------------------------------------------

2~ 

0 .()4 ± 0 .0 I 
6 .42 ± ()j() 

0 . I 0 ± O.OX 
ND11 

2.59 ± 0 .07 
12.0 ± 0 .63 
25 .. ~ ± 0.52 
15.2 ± O.X-l 
0.15 ± ().()2 

0 .21 ± 0 .05 
.lOO ± 0.53 
o.l4 ± o .m 
26.X ± 0 .96 
0.15 ± O.Otl 

2.10 ± 0.54 
1.10 ±0.07 

0.66 

"'The reaction mixture contained 3()() mg hmagc oil, 115 mg EPA. 150 units of PJt•utlomtmaJ Jjl . and 3 mi. hexane. The reaction 
mixture was im.:uhatcd at 37"C in <Ill orbital ~haking wa1er hath at 250 rpm. Experimental results arc means of tripliratc 
determinations. 

hNot dclC(;ICd 
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Tilhlc 4.7 Fatty acid composition of ~vcning primm~~ oillf:PO) llCior~ and afl~r lipii~L' -(iltillyt.cd <~cidolysis with EPA" 

Fally acid l>ur<~tion of <~cidolysi~ (ll) 

0 1.:? IH 2-t 

14:0 ().()4 ± 0.0 I 0.04 ± ().()J <W2 ± o.<n Nl> 1 

16:0 6.17 ± 0.09 5.X2 ± 11.25 -U-t ± 0.51 -Ul.:? ± 0.50 
16:1 0.04 ± 0.02 {),()4 ± 0 .<1.1 <W2 ± 0.0 I Nl>" 
17:0 O.OH ±0.01 O.OH ± ().()4 NDh ND" 
IK:O 1.75±0.12 1.70±<UH 1.16 ± ()_()') I. II ± O.OX 
IX: I H.M ± 0.56 H.20 ± 0.54 5.6.2 ±0.61 5.56 ±0.-ll 
IM:2w6 72.6 ± 0.91 6~L~ ± 1.55 56.9 ± 1.71 55.6 ± 0.().) 

IH:Jw6 9.12 :t CUK K.X:! ±O.K.:? 7.34 ±0.26 7.12 ±0.55 

I M:3m3 0.16 ± (),()) 0.10 ± 0.05 0.06 ± 0.()4 Nl>h 

20:0 0.34 ± 0.05 O .. H ± O.OK 0.21 ± 0.05 Nl>h 

20:1 0.29 ± 0.07 0 .22 ± ().()() 0.21 ±().()4 ND" 
20:2 0.05 ± ().()5 0.()4 ± 0.07 0.()4 ± 0.05 Nl>h 

20:5m3 NO" UU ± 1.3-1 21.h± 1.47 25.2 ± 1.45 

22:0 0.14 ± 0.05 0.11 ± 0.03 ND11 ND" 

22: I 0. 12 ± 0.0 I 0. 10 ± 0.()4 NDh Nl>h 

m3/w6 Ratio 0.001 0. 1-t 0.34 0.40 

-rhe reaction mixture contained 297 mg evening primrose uil , 115 mg EPA. 150 units of P.'lt'Utlomo11w· JfJ. and 3 mi. hcx;me. The 
reaction mixture was incuh<ttcd at 37"C in an orhital sh<tking water hath <II 250 rpm. Expcrimelllal results arc means of triplit:<ttc 
detcrmimuions. 

"Not detected 
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the fatty acid ~omposition of 80 using EP.-\ ethyl e~ter in the presence of an immobilized 

nonspecific SP-U5 lipase from Candida c.llltarctica as a biocatalyst. The highest 

incorporation t31 c-c l of EPA was achieved with 20q ( w/w) SP435 lipa'\e. At a substrate 

mole ratio of I :3. the corresponding ratio of w3 to CJ$J PUFA was 0 .6-l. Huang era/. 1 1994 l 

incorporated EPA ethyl ester into melon seed oil using two immobilized lipases. IM60 from 

.Hucor mit!izei and SP-B5 from Candida amarcrica. IM60 showed a higher incorporation of 

EPA t31.2q- in 24 hl than SP-B5 lipase !24.09c in 24 h). Time courses of acidolysis 

reaction of 80 and EPO with EPA by lipase from Pseudomonas sp. are illustrated in 

Figures 4 . 10A and 4.108. respectively. The total coment of monounsaturated. saturated and 

CJ$J fatty acids 1 LA and GLA) decreased up to 24 h and then reached a plateau. On the other 

hand. the content of EPA incorporation increased up to 24 h. In 80. the amount of GLA 

was decrea.•;;ed from 23.5 to 15.2q in a 24 h period. Similarly. in EPO. the content of GLA 

wa-; decreased from 9. 12 to 7 .\2<7,; in 24 h. After 24 h reaction with EPA. the content of LA 

in BO and EPO was decreased by 12.5 and 17.09c. respectively. The content of EPA 

incorporated into BO and EPO was 26.8 and 25.2%. respectively cin a 24 h period). 

The lipa.se from Pseudomonas sp. also effectively incorporated EPA+DHA into BO 

and EPO. Tables 4.8 and 4.9 show the fatty acid composition of BO and EPO. before and 

after acidolysis with EPA and DHA by the nonspecific lipase from Pseudomonas sp. The 

amounts of monounsaturated. saturated and total CJ$J fatty acids decreased due to EPA and 

DHA incorporation into the oils 1 Figure 4 .11 ). After enzymatic modification of BO. LA and 

GLA decreased by 11.3 and 5. 1 %. respectively. The amounts of EPA and DHA 



Figure 4. I 0 Changes in total contents of ro3. <.00. saturated and monounsaturated fatty 
acids of borage (A) and evening primrose oils (8) during lipase-catalysed 
acidolysis with EPA. The reaction mixture contained 297-300 mg oil. 115 
mg EPA. 150 units of Pser•domonas sp. lipase preparation and 3 mL 
hexane. The reaction mixture was incubated at 37°C in an orbital shaking 
water bath at 250 rpm. 
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Table 4.X 

t~atty acid 

14:0 
16:0 
I tl:l 
17:0 
IX:O 
IX: I 
I H:2<til 
IH:3w6 

IK:3ro3 
20:0 
20:1 
20:2 

20:5ro3 
22:0 
22:1 
24:1 
22:6ro3 

(tl.ll<•lh Ratio 

h1lly add co111position of horagc oil (B< )) hcfon: and alkr lipa~c-cata ly/.cd acidolysi!'l with EPA+ 1>111\'' 

Duration of al'idoly!'li!'l (11) 

() 12 IX 2-t 

0.07 ± 0 .02 Nl>" ND" ND" 
9.60 ± 0 .50 -' .X6 ± 0 .15 .... 55± 0 .57 4.00 ± 0.26 

0.20 ± 0.05 ND" Nl>t. ND" 
0.10 ± 0 .01 Nl>" Nil ND" 
.l50 ± ().()] 2.21±0.14 2.06 ± 0 .1 5 2.00 ± 0 . 14 

15.5 ± 0 . 70 II .0 ± 0.2h 10.1) ± 0 .20 10.7 ± 0 .54 

.n.x ± t. w 27.4 ± 1.20 26.6 ±lUI 26.5 ± 0. 26 
23.5 ± O.X5 IX.9 ±lUX IX.2 ± 0 .20 1H...t ±lUX 

0.21 ± 0.05 Nl>" ND1
' Nl>" 

0 .22 ± o.m~ ND11 Nl>h ND" 
4.20 ± 0 . I() 2.71 ± 0.52 2.h2 ± 0 .25 2.60 ± 0.07 

0.21 ± 0.05 Nl>to ND" ND" 
ND" 21.5 ± 0 .-t I 23. 1 ± 0 .42 2.ll ± 0 .2X 

0 . 15 ± 0 .07 ND" ND" ND" 
2.35±0. 12 I.XX ± 0 .27 1.50 ± 0 . 11 1.42 ± 0.5X 

I .50± 0. J() lPJX ± 0 . 1.~ 0.2-t ± 0.04 ND" 
ND11 H.45 ± IU2 ~t42 ± IUh X.h6±1U5 

0.00.1 O.h5 0 .70 0 .71 

'The reaction mixture comained 300 mg horagt: oil, 54 mg EPA. 5X mg DIIA, 150 units of 1'.\'t 'utlomtmtl.\' .\jJ . ;utd J mi. h~.: x allL' . 

The reaction mixture w<as im:uhatcd at .n"c in an orhit&~l slmking water hath at 250 rpm. Experimental rcsulls arc IIICilll !'l of 
triplicate dclermim•tions. 
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Tahlc 4.9 

Fally acid 

14:0 
16:0 
16:1 
17:0 
IM:O 
IX: I 
18:2oi> 
IH:3oi> 
I H:3roJ 
20:0 
20: I 
20:2 
20:5w3 
22:0 
22: I 
22:6(1}3 

(I).V(IXl Ratio 

Fatly acid composition of evening primrose oil 1EP01 before and alh:rlipasc:-catalyzcd acidolysis with 
EPA+ DHAa 

l>ur;ttion of acidolysis (11) 

0 12 II'! 2-t 

0.(>4 ± 0.0 I ND" ND" Nl>" 
6.17 ± 0.09 .t72 ± 0.2-t 3.70 ± 0.42 .LSI ± 0 .27 
0.()4 ± 0.02 ND" ND" ND" 
O.OX ± 0.01 ND" NJ>" ND" 

1.75 ± 0. 12 I. 12 ± ()_().J 1.07 ± 0 .1 6 1.00 ± ().()) 
X.65 ± 0.56 6. 5 .~ ± 0.27 5.X-t ± <U2 5.Xo ± 0 .4 I 
72.o ± O.lJ I 5~ .0 ± 0.93 50.6 ± 1.07 •NA ± 0.96 
9. 12 ±0.]~ 7.9] ± 0.4] X.Oo ± 0.40 7.4-t ± <U5 
0. I fi ± O.OJ ND" ND" ND" 
0 .34 ±0.05 ND" ND" Nl >" 
0 .29 ± 0.07 ND" ND" Nl>h 

0 .05 ±0.05 Nl>" NJ>" Nl>" 
ND" 21.7 ± tU5 21 .1) ± 0 .5X .B.5 ±Oj') 

0.14 ± 0.05 Nil ND" Nl>" 
0 .12 ±0.01 ND" Nl>" ND" 

ND" 6.tJ2 ± 0.26 X.tH ± tU2 ') .21 ± ().)() 

0.001 0.4X 0.52 0 .5X 

~'he reaction mixture contained 297 mg evening primrose oil. 54 mg EPA, 5H mg DIIA, 150 units of P.\'t•utlomomu .\f'. and ] mL 
hexane. The reaction mixture was incuh;ucd at 37"C in an orhital shaking water hath at 250 rpm. Experimental results arc means 
of triplicate dclerminations. 

"Not dclcctcd 

-
-..J 
:::1' 
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Figure 4.11 Changes in total contents of <.03. cll6. saturated and monounsaturated fatty 
acids of borage (A) and evening primrose oils (8) during lipase-catalysed 
acidolysis with EPA+DHA. The reaction mixture contained 297-300 mg 
oil. 54 mg EPA. 58 mg DHA. 150 units of Pseudomonas sp. lipase and 3 
mL hexane. The reaction mixture was incubated at 37<'C in an orbital 
shaking water bath at 250 rpm. 
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incorporated into 80 were 23 .1 and 8.66c;-c. respectively. The ratio of w3 Pl'FA./(1)6 Pl'FA 

increased from 0 .00 to 0. 71 <after 2-l h reaction ). [n the case of EPO. the content of LA wa..-; 

decrea..-;ed dra...;tically by 23.2cr. However. the content of GLA wa..-; reduced only by I .Y·c . 

The contents of EPA and DH.-\ of the resultant modified EPO was 23 .5 and 9 .2ac. 

respectively. The corresponding w3 Pl'FA/(1)6 Pl'FA increa...;ed from 0 to 0.58 . .-\koh t!t a/. 

1 1996) were also able to increase the w3 PCF.-\ (up to . .nee l of EPO with a corresponding 

increa....;e in the (J)3/(J)6 ratio from 0.01 to 0.60. Sridhar and Lakshminarayana < 1992 l were 

able to effectively modify groundnut oil by incorporating EPA and DHA using a .m-1.3-

specific lipase from Jlucor miehei as the biocatalyst. The resu ltant contents of EPA and 

DHA of the modified oil were 9.5 and 8.0£7<:- . respectively. Haraldsson t! t al. ' 1989) 

-;ucceeded 1n preparing EPA-enriched T .-\G 1-JOGc EPA and 25C"c DHAl a..s \veil a..'i DH.-\

enra:hed T.-\G of ..J8(l DHA and 129C EPA using appropriate EPA or DHA concentrates. 

respectively . . Hucor miehei lipase-catalysed interesteritication of cod liver otl with w3 

Pl"FA concentrates was used in the latter :-;tudy. 

-'.2.5 Effect of organic solvents 

The use of organic solvents is necessary to carry out bioconversion of lipophilic 

compounds effectivdy ( Kang and Rhee. 1989: He and Shahidi. 1997a 1. The ability of 

hydrophobic solvents to sustain and enhance enzyme catalysis has been demonstrated 

1 Laane er al.. 1987: K.ilbanov. 1989: Welsh et a/.. 1989: Hirata ec a/.. 1990). From a 

mechanistic standpoint. the effect of organic solvents on enzyme catalysis is still debated 
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'Laane t?t <ll .. I 987: Hirata t?t a/ .. I 990L Organic so[\·enrs induce various physicochemical 

ctTct.:ts on enz~ me molecules. and these dfects differ depending upon the type of organic 

..;ohent and enzyme used 1 Li and ward. 1993l. Confonnational changes in enzymes. \vhen 

suspended in organic solvents. ha\·e been reported to result in alteration of ..;ubstrate 

specificity and affinity of substrates for enzymes 1 Dordick. I 989). The polarity of organic 

solvents affects lipase,atalysed reactions. Several variables are critical to enzyme activity 

in organic media. The nature of solvent is crucial for maintaining a layer of essential water 

around the enzyme molecules. The most hydrophobic solvents are best for this purpose as 

there is no incenti\e for the t!ssenrial water to partition into the solvent. thus it remains on 

and around the enzyme 1 Laane t!t a/.. 1987l. [t has been proposed that the log P (the 

logarithm of partition coefficient between water and octanol as a measure of polarity) 

paramc:ter be used as a means of predicting the denaturing l!ffect of a solvent on a 

biocatalytiC system 1 Laane et a/ .. 19851. Laane er al. 1 1985) concluded that solvents \vith log 

P values in the range of 2-4 may be used in an aqueous/organic solvent system. It has been 

reported that a certain level of water is necessary for the lipase-catalyzed reaction in organic 

media 1 Yamane. 1987). but when the amount of water reaches a critical level it promotes 

hydrolysis ( Dordick. 1989). However. complete depletion of water from the system results 

in no biochemical reaction (Liu and Chi. 1997). 

To select the most suitable solvent for acidolysis of BO and EPO with DHA by 

lipase from Candida antarctica. the effect of the presence of various organic solvents 

1 isooctane: log P = ~.5. hexane: log P = 3.5. toluene; log P = 2.5. benzene: log P = 2.0, 
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Figure 4. 12 Effect of different organic solvents on the incorporation of DHA into 
borage (A) and evening primrose oils (8). The reaction mixture contained 
297-300 mg oil. 120 mg DHA. 150 units of Candida antarctica lipase 
preparation and 3 mL hexane. The reaction mixture was incubated at 37"C 
for 24 h in an orbital shaking water bath at 250 rpm. 
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acetone: log P = -0.2.3. ethyl acetate: log P = 0.68 and petroleum i.!ther: no log P value was 

reponed 1 m the reaction medium was examined (Figure 4. 121. n-Hexane v .. ith a log P value 

of 3.5 \\as found to be the best solvent. affording a DHA incorporation of 27.-+ and 25.5ct 

in 80 and EPO. respectively: thus the present results lend funher suppon to the findings of 

Akoh eta!. 1 1995.1996) who reponed that 11-hex.ane was highly effective in incorporating 

EP:\ and DHA into oils. Organic ..;olvems such as rz-hexane have several functions. 

including increa..o.;ing the solubility of nonpolar substrates and shifting the reaction towards 

synthesis rather than hydrolysis 1Kiibanov. 19861. However. -;atisfactory incorporation of 

20.5 and 18. 1 c,. of DHA in 80 and EPO. respectively. was achieved in solvent-free 

systems. For food applications. the solvent-free reaction may be the method of choice. 

Claon and Akoh ( 19941 have demonstrated that this enzyme worked well in the solvent-free 

synthesis of primary terpene acetates. 

Various solvents were also tested as reaction media to determine their effects on 

EPA incorporation into BO and EPO in the presence of Pseudomonas sp. lipase (Figure 

4.13 ). The highest incorporation was achieved in n-hexane ( 26.8'l in 80 and 15.2C:c in 

EPO) while isooctane produced the second highest EPA incorporation. The solvent-free 

reactions gave acceptable incorporation of 20.-+ and 18.69c of EPA into BO and EPO. 

respectively. It may then be concluded that n-hexane serves best for the acidolysis reaction 

of oils with EPA. 

Figure 4.14 shows the effect of different organic solvents and no solvent as the 

reaction media for acidolysis reaction of oils with EPA and DHA catalyzed bv 



Figure 4. 13 Effect of different organic solvents on the incorporation of EPA into 
borage (A l and evening primrose oils (B). The reaction mixture contained 
297-300 mg oil. 115 mg EPA. 150 units of Pseudomonas sp . lipase 
preparation and 3 mL hexane. The reaction mixture was incubated at 37"C 
for 24 h in an orbital shaking water bath at 250 rpm. 
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Figure 4.14 Effect of different organic solvents on the incorporation of EPA+DHA 
into borage (A) and evening primrose oils (8). The reaction mixture 
contained 297-300 mg oil. 54 mg EPA. 58 mg DHA. 150 units of 
Pseudomonas sp. lipase preparation and 3 mL hexane. The reaction 
mixture was incubated at 37°C for 24 h in an orbital shaking water bath at 
250 rpm. 
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Pst!udomonas sp. lipase. The best solvent was n-hexane. \vhich gave a total EPA+DHA 

incorporation of 33.3 and 27.8C:C in BO and EPO. respectively. Lipase from Pst!udomonas 

sp. also performed well when the reaction was carried out in the absence of any organic 

solvent. giving rise to 28.8 and 23..+'7c EP.-\+DHA incorporation in BO and EPO. 

respectively. :\koh t't al. 1 1995) tested five organic solvents with Candida anrarcrica lipase 

lm EPA and DH.-\ incorporation in trilinolein. They reported that the best solvents were n

hexane and isooctane. which gave total yields ranging from 63 .2 to 76.2°c. 

-1.2.6 Effect of mole ratio of substrates 

The effect of 80/DHA mole ratio on DHA incorporation by Candida antarctica 

lipase is shown in Table 4.10. As the number of moles of DHA increased. its incorporation 

into BO v.,·as also increased. reaching a 1.4 fold increase at a 80/DHA molt! ratio of I :2 and 

remained constant up to a ratio of I :3 which is the stoichiometric ratio of the TAG to FFA 

involved. As the mole ratio increased. the amount of GLA was decreased. but to a lesser 

extent than the amount of DHA incorporation !Table 4.1 0). Incorporation of DHA in 80 

\..-as increased up to 39.7q. at a mole ratio of 1:3 tTable 4.10). 

Table 4. 11 shows the dfect of increasing substrate mole ratio 1 from I: I to I :3) on 

DHA incorporation into EPO. As the number of moles of DHA was increased. 

incorporation increased. Incorporation of DHA in EPO was increased up to 37 .4Ck- at a mole 

ratio of I :3. Successful incorporation of oleic acid into melon seed oil has been reported by 

~oussata and Akoh ( 1997) who showed that the use of non-specific lipase PS30 from 



Table -UO 

(85 

Effect of mole ratio of substrates on DHA incorporation into borage 

oil 1BOr1 

Major Fatty acids Mole ratio 

1: I 1:2 1:3 

16:0 7.20 ±0.16 5.84 ± 0 .23 5..+1 ±0.15 

18:0 3.04 ± 0.13 2.44 ±0. 11 2.24 ± 0 .14 

18: I 12.3 ± 0 .29 10.3 ± 0 .35 10.0 ± 0 . 12 

18:2<00 26A ±0.20 22.4 ± 0.63 21.8 ± 0 .26 

18:3<00 16.3 ±0.27 14.0 ± 0 . 16 13.4 ± 0.38 

22:6co3 27.0 ±0.33 37.4 ± 0.84 39.7 ± 1.21 

,~Mole ratios of borage oil to DHA were varied from I: 1 to 1:3. Reactions were carried 

out at 37°C for 24 h in an orbital shaking water bath at 250 rpm. 
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Effect of mole ratio of substrates on DHA incorporation into evening 

primrose oil ! EPO)~ 

Mole ratio 
~lajor Fatty acids 

I : 1 1:2 1:3 

16:0 ~.53 ±0.50 3.72 ±0.17 2.81 ± 0 . .23 

18:0 0 . .22 ± 0.07 0.21 ±0.05 0.20 ± 0.03 

18: I ~.81 ±0.50 4.33 ± 0.24 3.84 ± 0.5.2 

18:.2c.OO 53.3 ± 1.26 50.6 ± 1.60 47.3 ± 1.34 

18:3c.OO 7.61 ±0.45 7.40 ±0.21 6 . .21 ± 0.25 

.2.2:6c.o3 27.2 ±0.10 31.1 ± 1.80 37.4 ±0.82 

aMole ratios of evening primrose oil to DHA were varied from l: l to 1 :3. Reactions 

were carried out at 37°C for 24 h in an orbital shaking water bath at 250 rpm. 
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Pst:wlommzas sp. resulted in a 53.-+0 c incorporation of oleic acid imo the oil at a mole ratio 

of 1:5. 

The mole ratio of substrates to fatty acid also affected EPA incorporation ! 0 c) into 

BO and EPO t Tables -U 2 and ~ . 13l. respectively. The EPA incorporation increased as its 

mole ratio in the reaction medium increased. The largest increase !by 10.6 and 9.9'l in 80 

:.md EPO. respectively l occurred between the mole ratios of I: 1 and I : 2 and the smallest 

increase t by 2.5 and 2.3°c in BO and EPO. respectively) occurred between the mole ratios 

of I :2 and I :3. However. EPA incorporation was maximum at the stoichiometric oil/EPA 

ratio of \:3 . At the mole ratio of I :3. incorporation of EPA into BO and EPO was 39.9 and 

37.-lc:c. respectively. Similar results from the reaction of EPO with EPA ethyl ester was 

obtained with an immobilised lipao;;e SP435 from Candida antarctica !Akoh eta/.. 1996). 

The results so obtained indicated that between mole ratios of 1: I and I :2. the largest 

increase of 16r.c- occurred. and that the smallest increase of 6% took place between mole 

ratios of I :2 and I :3. Previously. A.koh and Sista! 1995) moditied the fatty acid composition 

of BO with EPA using an immobilized nonspecific lipase from Candida antarctica as the 

biocatalyst. These authors were able to increase the EPA incorporation up to 28.1% at a 

mole ratio of l :3. 

Tables -l.l-l and -l.l5 show the effect of increasing the amount of substrates on 

EPA+DHA incorporation into 80 and EPO. respectively. This study was perfonned by 

varying the mole ratio of oils to EPA and DHA. respectively. from 1:0.5:0.5 to 1:3:3. 

Initially. the incorporation of EPA+DHA increased with increasing mole ratio. up to a mole 



Table -+.12 

188 

Effect of mole ratio of substrates on EPA incorporation into borage 

oil (80).1 

Mole ratio 
Major Fatty acids 

I : 1 1:2 1:3 

16:0 7.22 ~ 0.17 5.84 ~ 0.28 5.42 ~ 0.15 

18:0 3.00 ~0. 15 2.40 ~0. 16 2.23 ~ 0.18 

18: l 12.3 ~0.24 10.3 ~0.34 10.0 ± 0.1-+ 

18:2<00 26.4 ~0.28 22.4 ±0.66 21.8 ± 0.25 

18:3<00 16.3 ~0.29 14.0 ± 0 .19 13.4 ± 0.33 

20:5c.u3 26.8 ±0.30 37.4 ±0.87 39.9 ± 1.20 

:lMole ratios of borage oil to EPA were varied from l : l to I :3. Reactions were carried 

out at 37°C for 24 h in an orbital shaking water bath at 250 rpm. 



Table ~.13 

1~9 

Effect of mole ratio of substrates on EPA incorporation into evenmg 

primrose oillEP0)3 

~ole ratio 
~ajor Fatty acids 

1:1 1:2 1:3 

16:0 ~.52± 0.50 3.72 ±0.17 2.80 ±0.23 

18:0 0.22 ±0.07 0.23 ±0.05 0.20 ±0.03 

18:1 ~. 81 ±0.50 ~ .3 ±0.24 3.83 ± 0.52 

18:2<00 53.3 ± 1.26 50.6 ± 1.60 ~7 .3 ± 1.34 

18:3<00 7.61 ±0.45 7.44 ±0.21 6.21 ± 0.25 

20:5cu3 25.2 ±0. 10 35.1 ± 1.80 3i.4 ± 0.82 

3Mole ratios of evening primrose oil to EPA were varied from 1:1 to 1:3. Reactions were 

carried out at 37°C for 24 h in an orbital shaking water bath at 250 rpm. 
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Effect of mole ratio of substrates on EPA+ DHA incorporation into borage 
oil (80r' 

~ole ratio 

~tajor fatty acids --------------------------
1:0.5:0.5 1:1 :1 1:2:2 1:3:3 

16:0 5.67 ± 0.51 -+.41 ± 0.48 2.58 ± 0.22 3.20 j: 0.54 

18:0 2.55 :t: 0.26 2.20±0.57 2.00 ±0.86 1.63 ± 0.31 

18:1 12.1 :t: 0.57 10.4 ± 0.33 6.67 ± 1.00 7.23 ±0.43 

18:2CJXS 2-+.3 ± 1.20 20.0± 1.59 11.9 ± 0.63 14.1 ±0.9::2 

18:3CJXS 15.9±1.11 13.4 ±0.42 8.16 :t: 0.14 9.40 ± 0.55 

20:0 2.71 ± 0.51 2.50 :1: 0.51 1.54 ± 0.81 1.04 ±0.57 

20:5ro3 21.8 :1: 0.83 32.3 ±0.83 48.5 ± 1.20 -+3.::2 ± 1.10 

2::2:1 2.04 :1: 0.62 2.00 ±0.09 1.62 ± 0.39 1.55 ±0.09 

22:6ro3 6.88 ±0.69 9.17 ±0.54 9.00 ± 1.42 9.99 ±0.98 

3Mo1e ratios of borage oil to EPA to DHA were varied from 1:0.5:0.5 to 1:3:3. Reactions 
were carried out at 3-fC for 24 h in an orbital shaking water bath at 250 rpm. 
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Effect of mole ratio of substrates on EPA+ DHA incorporation into evening 
primrose oil 1 EPQ)a 

Mole ratio 

.\'tajor fatty ac1ds ----------------------------
1:0 .5:0.5 1:1:1 1:2:2 1:3:3 

16:0 3.71 :t0.25 3.03 :t 0.23 2.21 ::: 0.31 2.03 :t 0.42 

18:0 1.12 :t 0 .33 1.01 :t0.12 0.76 :t 0.24 0.68 :t 0.44 

18: I 6.54 :t 0 .98 5.78 :t 0.29 4 .30:::0.51 3.60 :t 0.28 

l8:2w6 -+7.9 :t 1.09 41.1 :t 1.00 29.9 :t 0.82 26.9 :t 1.27 

18:3w6 7.26 ± 1.07 6. 10 :t 1.20 4.28 ±0.32 3.91 :t 0. 13 

20:5013 23.7 ± 0.27 32.9 ±0.97 47.9 ± 1.45 49.3 ± 1.07 

22:6013 6.54 ±0.99 5.99±0.11 6.11 ±0.98 3.30 ± 0.26 

aMole ratios of evening primrose oil to EPA to DHA were varied from 1:0.5:0.5 to 1:3:3. 
Reactions were carried out at 37°C for 24 h in an orbital shaking water bath at 250 rpm. 



ratio of l :2:2. then remained constant between mole ratios of I :2:2 and I :3:3 . The total 

incorporation of EPA and DHA of 57.5 and 54.oq. was obtained at a mole ratio of I :.2:2 for 

80 and EPO. respectively. There is no economic advantage in using high substrate mole 

ratios. especially EPA and DHA. Depending on the level of EPA and DHA incorporation 

desired in the tina! product. the substrate mole ratio can be manipulated to achieve it. High 

EPA and DHA concentrations in the medium may indeed lead to reaction inhibition . 

Similar observations have been reported by Akoh and Yee ( 1997) in a reaction involving 

lipase L\1 60 1 Rlzi::.omucor mieheil-catalysed synthesis of SL from high mole ratios of 

caprylic acid and triolein. Kuo and Parkin ( 1993) have also reported a concentration

dependent substrate preference for lipase-mediated acidolysis reactions. At concentrations 

above 300-500 llmol/g. reaction tnhibition was observed for fatty acid substrates. and 

inhibition took place at lower concentrations for shorter-chain length fatty acids. lnhibition 

was primarily attributed to acidification of the microaqueous environment of the lipase. 

Desorption of water by the fatty acid substrate may be a secondary mode of inhibition ( Kuo 

and Parkin. 1993 ). 

-'.3 Optimization of enzymatic acidolysis of borage <80) and evening primrose oils 

<EPO) with (1)3 PUFA (EPA and DHA) 

-'.3.1 Locating an appropriate experimental region for response surface 

methodology (RSM) 

As mentioned in the previous section. the most important parameters that affect 



incorporation of DHA. EPA and EPA+DH.-\ into the oils are the amount of enzyme. 

reaction temperature and reaction time. Figures -l . IS .-\ and -+. 16A shov.; the effect of the 

amount of enzyme on DH.-\. incorporation ( C1- l into BO and EPO. respectively. whi le 

corresponding results for EPA incorporation in these oils are illustrated in Figures ~.1 7.-\ 

and ~.18A. Similarly. Figures -+.19A and ~.20A display the effect of amount of enzyme 

on EPA+DH.A incorporation <c:c) in BO and EPO. respectively. The response behaved as 

second order function of the independent variable ! amount of enzyme 1 with higher 

correlation coefficients as compared with those of the linear modds. As the amount of 

enzyme increased. the DH.A. EPA and EPA+DH.A incorporation also increased. In DH.A

enriched oils. incorporation of DHA was maximum at a 100-150 enzyme <lipase from 

Candida ancarcrical unit concentration. The design points selected for optimization of 

DHA-enriched oil production were 100. 150 and 200. On the other hand. in EPA

enriched oils. incorporation of EPA was ma.-~imum at 150-250 enzyme dipao;e from 

Pseudomonas sp. 1 un1ts. Therefore. the three design points selected for optimization of 

EPA-enriched oils were 150. 250 and 350. In EPA+DH.A-enriched oils. incorporation of 

EPA+DHA was maximum at 250-350 enzyme (lipase from Pse14domvnas sp.) units. 

Therefore. variable levels of 150. 250 and 350 were selected as the lower. middle and 

upper points. respectively. 

The effects of incubation temperature and reaction time on DHA. EPA and 

EPA+DHA incorporation in oils were second order functions (Figures -+. 15 - -+.20). In 

DHA-enriched oils. the DHA incorporation at 20°C was low. but increased with 
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Figure 4. 15 Effects of amount of enzyme (A). incubation temperature (B) and reaction 
time (C) on DHA incorporation into borage oil. Each data point represents 
the average of three determinations. LM and QM denote linear and 
quadratic models. respectively. 
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Figure ~ . 16 Effects of amount of enzyme (A). incubation temperature (8) and reaction 
time (C) on DHA incorporation into evening primrose oil. Each data point 
represents the average of three determinations. LM and QM denote linear 
and quadratic models. respectively. 
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Figure 4. 17 Effects of amount of enzyme (A). incubation temperature (B) and reaction 
time <C) on EPA incorporation into borage oil. Each data point represents 
the average of three determinations. LM and QM denote linear and 
quadratic models. respective! y. 
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Figure 4.18 Effects of amount of enzyme (A). incubation temperature (B) and reaction 
time (C) on EPA incorporation into evening primrose oil. Each data point 
represents the average of three determinations. L\1 and QM denote linear 
and quadratic models. respectively. 
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Figure 4. 19 Effects of amount of enzyme (A). incubation temperature (8) and reaction 
time (C) on EPA+DHA incorporation into borage oil (80). Each data 
point represents the average of three determinations. LM and QM denote 
linear and quadratic models. respectively. 
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Figure 4.2.0 Effects of amount of enzyme tA). incubation temperature <B) and reaction 
time (C) on EPA+DHA incorporation into evening primrose oil IEPO). 
Each data point represents the average of three determinations. LM and 
QM denote linear and quadratic models. respectively. 
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increasing tempc!ratures up to 50-60''C. Therefore. \·ariable kvels of 30. 45 and 60''C 

were chosen as the! lower. middle and upper points. respectively. In EP.-\-enriched oils. 

incorporation of EP:\ was ~atisfactory at 20''C. Hov.:ever. higher temperatures t up to 

60''C) were more suitable for the reaction . The variable levels of 20. -W and 60 v.;ere 

chosen as design points. Incorporation of EPA+DHA in oils was low at 20''C. but 

increa..o.;ed with increasing temperatures up to 55''C. Therefore. design points of 30. 45 and 

60 were ~elected for optimization experiments. 

Results for time course study showed that ~l'i the reaction time increased. DHA 

incorporation increased. reaching a maximum and then declining \Vith inc.:reasing reaction 

time. The three! design points selected for the time course were 18. 24 and 30 h. In EPA

enriched oils and EPA+DHA-enriched oils. incorporation of PCFA wa.s low at 6 h. but 

mcreased with time up to .24-30 h. Therefore. the three design points chosen v.;ere 6. 18 

and 30 h. 

-'.3.2 Experimental design for response surface analysis 

Response surface methodology ( RSM) is an optimization technique which 

determines optimum process conditions by combining special experimental designs wi th 

modelling by first or second order polynomial equations in a sequential testing procedure . 

RSM tests several variables at one time. uses special experimental designs to cut the 

number of required determinations. and measures several effects by objective tests. The 

results of classical one-variable-at-a-time experiments do not reflect actual changes in the 
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~nvironment as they •gnore interactions between factor". which are in effect simultaneous. 

\tore sophisti~.:ated designs such as RS~t can describe concomitant dfech more fully and 

help in more accurate optimization of tacrors that affect the process and allv\v simultaneous 

solution of multivariate equations which ..;pecify the optimum yield for a specific set of 

factors through mathematical models. 

The most dfecti\·e lip:.L-;e for the acidolys1s of BO and EPO w1th DHA was Cmdida 

,mrarcrica lip:.L-;e. On the other hand. the most dfective lip:.Lse for acidolysi~ of BO and EPO 

with EPA and EPA+DHA \vas lipase from Pseudomonas sp. Howevt'r. there are many other 

factors that affect the product yields tincorporation of DHA. EPA ~md EPA+DHAl of 

lipase-catalyzed acidolysis of acylglycerols. These include temperature of the reaction 

medium. reaction time. -;ubstrate and enzyme concentrations. among others. Therefore. it is 

necessary to study these factors collectively to tind the optimum reaction conditions to 

obtain maximum incorporation of DHA. EPA and EPA+DHA by the most effective 

enzymes mentioned above. For this study. reaction parameters such J..-.. the amount of 

enzyme (X 1 1. reaction temperature 1 X2J and reaction time 1 X d were selected for 

optimization. The substrate mole ratios of 1:1 (oil/DHA and oii!EPAl and I :0.5:0 .5 

toil!EPAIDHA) were kept constant because incorporation of DHA. EPA and EPA+DHA 

was satisfactory at these mole ratios. Therefore. these ratios were selected for optimization 

by RSM. Enzyme concentration and reaction time are major factors that affect the cost of 

preparation of DHA. EPA and EPA+DHA-enriched oils via lipase catalyzed acidolysis. 

Furthermore. temperature of the reaction medium and also reaction time can be considered 
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tmponant as they intluence the oxidati\·e status of prepared oils. 

In this study. a face-~entred ~ube destgn was employed 1 Table:-. ~ . 16. ~ . 17 and 

~. 181: the actual kvels of variables used in each experimental run are .... hown in Tables 

~ . 16. ~.17 and ~ . 18. This design \\;as chosen over alternati\·es such as a rotatable design 

because it uses only three levels of each factor. whereas other ~entral composite designs 

would require fi\·e levels of each 1 \-tason era/ .. 19891. Having three levels instead of five 

is LOnsiJereJ desirable: because it reduces the preparation time. Three replicates were 

takt!n at the design (entre 10.0.01 so that total number of observations wa..' n = 8 + 6 + 3::: 

17. The main advantage of the design is that it enables one to study one or more variables 

-;imultaneously in a single experimental design of practicable size ( ~lontgomery. 1991 L 

The data obtained for DHA. EPA and EPA+DHA incorporation 1 q. l from the 

-;en!ntecn r!Xperimental points were used for -;tatistical analysis to optimize the process 

\·ariables: the amount of enzyme. reaction temperature and reaction time. Tables ~ . 16. 

~ . 17 and ~.18 -;ummarize the experimental data for response variables Y 1 and Y.:: 1 c;c DHA 

incorporation in 80 and EPO. respectively !. y, andY~ t 0C EPA incorporation in 80 and 

EPO. respectively!. and Y5 and Yfl ('71: EPA+DHA incorporation in 80 and EPO. 

respectively!. 

~ultiple regression coefficients. obtained by employing a least squares technique 

to predict quadratic polynomial model for incorporation of DHA. EPA and EPA+DHA 

1 Cic l in oils. are summarized in Table ~. 19 . Examination of these coefficients with the t

test indicated that in DHA-enriched 80. linear and quadratic terms of reaction time ( XJ l 
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Table ~.16 Face-centred cube design arrangement and responses for the acidolysis of 

oils wilh DHA ~ 

Run Independent variables Responseb 

Amount of enzvme Temperature Time Yt y~ . 

100" 1-1) 
.. 

30 (-1) 18 (-I) 25 .7 26.5 
, 1001-1) 30 (-1) 30 t+l l 29.6 29.5 

3 1001-1) ~5 tO) 2~ (0) 32.4 31.2 

~ 100 <-1) 60 (+I) 18 (-I) 28.0 28.1 

5 100 (-I) 60 (+I) 30 ( + 1) 30.9 29.5 

6 150t0l 30 (-I) 2~ (0) 32.2 30.8 

7 150!0) ~5 (Q) 18 (-I) 29.2 30.5 

8 150 (Q) ~5 (Q) 24 (0) 34.1 31.3 

9 150 (Q) ~5 tO) 24 (0) 3~.7 31.5 

10 150 10) ~5 tOl 24 (0) 34.5 32.0 

II 150 10) ~5 10) 30 (+1) 32.4 31.6 

12 150 (0) 60 (+1) 24 (0) 32. 1 30.4 

13 200 (+1) 30 ( -1) 18(-1) 28.6 29.5 

14 200 (+I) 30 ( - 1 ) 30 ( + 1) 29.7 30.6 

15 200 (+ 1) 45 10) 24 (0) 32.5 30.9 

16 200 (+ 1) 60 (+ 1) 18 (-1) 30.8 29.1 

17 200 (+1) 60(+1) 30 ( + 1) 31.4 29.4 

aNonrandomized; 6 Averages of duplicate determinations from different experiments: Y 1 = 

9'o DHA in SO: Y 1 =% DHA in EPO: "Uncoded variable levels; ··coded variable levels 



Table -U 7 Face-centred cube design arrangement and responses for the acidolysis of 

oils with EPA .I 

Run Independent variables Responseb 

Amount of enzyme Temperature Time Y1 y.l 

l50. ( -1 ) •• 20 (-I) 6 ( -l) 10.8 7.27 
.., 150 (-1) 20 (-I) 30 (+1) 26.4 2~ .6 

3 !50 (-1) ~0 (0) 18 (0) .28. 7 26.2 

~ !50 (-I) 60(+1) 6 ( -1) 13.9 16.3 

5 !50 1-l' 60 (+!) 30 (+I) 22.8 25 .3 

6 250 (0) .20 (-I) 18 (0) 26.3 2~.4 

7 250 (0) ~0 (Q) 6 (-I) 23.7 2!.9 

8 250 (0) ~0 (0) 18 (0) 32.9 ~.., -_, __ .) 

9 250 (0) ~0 10) 18 (0) 32.6 31.0 

10 250 (0) ~0 (0) 18 (0) 33 .6 31.8 

II 250 (0) ~0 10) 30 (+I) 36A 3~.4 

12 250 (0} 60(+1) 18 (0) 27.7 32.4 

13 350 (+1) 20 ( -1) 6 (-1) 17.0 12.2 

1~ 350 (+l) 20 ( -1) 30 ( + 1) 29.2 28A 

15 350 (+1) ~0 (0) 18 (0) 33.7 33 .9 

16 350 (+1) 60(+1) 6 ( -1) 24.9 23.4 

17 350 (+I) 60 (+1) 30 ( +1) 29.0 29.6 

.~~ onrandomized; Averages of duplicate determinations from different experiments: Y 1 = 

%EPA in 80: Y"'=% EPA in EPO: ·uncoded variable levels: ··coded variable levels 
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Table .+. 18 Face-centred cube design arrangement and responses for the acidolysis of 

oils with EPA+DHA.l 

Run lndependent variables Responsc:n 

Amount of enzyme T emperarure Time y~ Y,., 

1so· 1 -I 1 30 l-1) 6 (-I) 2 1.7 23 .2 

1 150 (-1) 30 l-1) 30 1+1) 28 .9 28.8 

3 150 I -I) ~5 (0) 18 (0) 30. 1 30.2 

~ 150 (-1) 60 1+1 l 6 (-I) 20.5 23.1 

5 150 (-I) 60(+1) 30 !+1) 27.9 28.3 

6 250 (0) 301-1) 18 l0) 32.0 30.2 

7 250 (Q) ~5(0) 6 (-I) 29.8 29.5 

8 250 !0) ~5 (0) 18 (0) 35 .3 33.3 

9 250 (0) -+5 ( Q) 18 (0) 34.0 33 .7 

10 250 (Q) -+5 10) 18 (Q) 33 .8 3~ .6 

II 250 lOi ~5 10) 30 l+l) 36.4 33 .6 

12 250 10) 60 (+I) 18 (0) 29.3 28.1 

13 350 (+l) 30 (-I) 6 (-I) 29 .5 29.0 

14 350 (+I) 30 (-I) 30 ( + l) 31.7 30.3 

15 350 (+I) 45 10) 18 (0) 3~ .8 33 .8 

16 350(+1) 60 C+ I) 6 (-1) 25 .3 25.4 

17 350 (+I) 60 (+l) 30 (+l) 27.7 28.6 

lNonrandomized; 6 Averages of duplicate determinations from different experiments; Y~ = 

% EPA+DHA in BO; Y 6 = % EPA+DHA in EPO: "uncoded variable levels; ··coded 

variable levels 



Table 4.19 Regression t.:ocffidcnts of predicted quadratic polynomial model for response ( Y) 

Coefficicnls11 BO, DHA (%) EPO, DHA (%) BO, EPA ( 1~1 ) EPO, EPA(%) BO, EPA+DIIA ( 1~, ) EPO.EPA+I>IIA ek l 
(Yd (Y 2) (Yd (Y.d (Y., ) <Y!Il 

Po -43.5149 ... -13.1619 •• -33.192""" -w .lJl)7l) ••• -.14.3671 -21.7041"'' 

Linear 

PI 0.1668" 0.1519··· 0.1262 ... 0.1572 ... 0. 17.11 
... . .. 

OWJ45 
0.5628" 0.6322" •• 1.2941··· 1.1224 ... I .Mtn··· 1.5779 

... 
P2 

3.9774··· 1.4356··· 1.7631 ... 2.1170··· 
... 

PJ O.H601 0.64KlJ 

Quadratic 
-0 .()( )()) •• -0.()()02 ••• -o.ooof" -0 .0002 ... tlll -0.0004 -0.0001 , ... 

0 

-0.0052" -0.0053""" -0.0155'"" -0.0 I 05 ••• -0.0179 ... -0.01 72 ... "' P22 
PJ.l 

-0.0702··· -0.0205 •• -0.0219··· -0.0311 -O.lH w··· -0.010.1'" 

Interactions 
-0,()()()5 •• 0. ()()()) ... o.ooo2""" .. 

pl2 0.00005 -0 .0005 -0 .0004 
-0.()()21" -0.()() I J" -0.()()()~(·· -0.()()04 ... -0.()() 10 

... 
-O.()()()J" . 

Pu -0.0020 -0.()()33 -0.()()7t•• -0.()()95 ... -0.()()()] -0 .00 I 0 
Pn 
Pu1 

R2 0.94 0.95 0.99 O.lJlJ 0 .99 O.lJH 

CV% 2.92 1.53 2.lJ4 4.2') 2.25 2.47 

11Coetlit:icnts refer to the general model ; R1 =coeffic ient of determination; CV1~·= t:odlil·il·nt of vari••tion 
"significant at IW~~ level; ··signifit.:ant 5 ty,, level ; ···signifit.:ant I lJc, kvcl 



were highly ..;ignific:.lnt 1 p :::; 0.0 II. Ho\vever. linear terms of the amount of enzyme 1 X 1) 

:1nd rea~.:tion temperature 1 X: 1 and quadratic term of reaction temperature <X::l were 

signifi~.:ant at p:::; 0 .1 level. There was also a significant interaction 1 p:::; 0.1) between the 

amount l)f l!nzyme 'X 1 l :1nd reaction time 1 X • l. However. interactions of the J.mount of 

enzyme 1 X, l and rt!action temperature 1 X:: 1 and also reaction temperature <X~) and time 

1 X, J were not significant 1 p > O. ll. ln DHA-enriched EPO. all linear and quadratic terms 

\vere significant at p :::; 0.05. There were significant interactions lp :::; 0.1 ) between the 

amount of enzyme 1 X 1 l and re:1ction temperature 1 x~) and also between the amount of 

l!nzyme 1 X 1 1 and reaction time 1 X • 1. The ~.:oefficients obtained for EPA-enriched BO and 

EPO showed that all linear. quadratic and interaction terms were highly significant at p :::; 

0.01. [n EPA+DHA-enriched BO. all linear and quadratic terms were highly significant !p 

~ 0.0 I l. There were ..;ignific:.lnt interactions 1 p ~ 0.051 between the amount of enzyme 

1 X 1 l anJ incubation tempera[Ure 1 X:: l and also between the amount of enzyme 1 X 1 l and 

incubation time 1X11. On the other hand. in EPA+DHA-enriched EPO. all linear tenns 

had the greatest effect on EPA+DHA incorporation as they were highly significant <p s; 

0.0 I l. Among the quadratic tenns. reaction temperature and time were significant at p ~ 

0.05 . There was also a significant interaction ( p s; 0.05) between the amount of enzyme 

1 X 1) and incubation time (X 1 l. Therefore. these results suggest that linear. quadratic and 

interaction dfects of the amount of enzyme. reaction temperature and reaction time are 

the primary determining factors for EPA and DHA incorporation into BO and EPO. 

The contribution of linear and quadratic terms to the models in DHA-enriched oils 
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v.·as 22-25 and 63-65<} . respectively. Corresponding values in EPA-enriched oils \vere 

-1-9-57 .md 37 -46q.. respectively. The linear and quadratic terms for Y ~ 1 EP.-\+DHA-

enri..:h~d B01 ..:onrributed 38.0 and 55.0'1: to the model. respectively. Contribuuon of linear 

and quadrati..: terms of Y M ( EPA+DHA-enriched EPO) to the model were 32.0 and 62.0C"c. 

respectively. The coefficient of determinations for y, andY~ (R:: = 0 .9-+-0.95 1 imply that 

l)...J-95cc of the variations could be explained by the fitted model. The coeffkient of 

determinations for Y:. Y~. y, and Yr. were 0.99. 0.99. 0.99 and O.lJ8. respectively . 

Coefficient of variations 1CYl for all models of less than 5% indicated that the models 

were reproducible 1 Table -+.19). 

The ..:oefficients of independent variables. the amount of enzyme 1 X,). reaction 

temperature 1 X:: 1 and reaction time (X • ). determined for quadratic polynomial models for 

DHA mcorporation in 80 (YJl and EPO (Y~) are given below: 

Y 1 = -43.515 + 0.167X, + 0 .563Xz + 3.98XJ- 0.00035X,z- 0.005.2Xz: - 0.0702X): 

+ o.oooosx,x::- 0 .0021 x~x.1 - o.oo21x,x~ 

, , ' 

Y: = -13 . 16.2 + 0.15.2X1 + 0 .632X2 + 1 A36XJ - 0.0003X~-- 0.0053x~-- 0 .0204X.-

- O.OOOSX1X::- 0.0033X::XJ - 0.0013XJXJ 

The quadratic polynomial models for EPA incorporation in 80 (YJl and EPO (Y~I were: 
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y, = -33.192 + O. I.:!6X1 + 1..294X~ + 1.763X;- O.OOO::?.X1 2 - 0 .016X:::- 0.022X:: 

+ O.OOOSX 1X2- 0 .0078X2X: - 0.0009XIX : 

Y.l = -39.998 + 0.157XI + 1.122X.! + ::?. . 117X~- 0.0003XI 2
- O.OIIX::::- 0.031X::: 

+ O.OOO::?.X1X2- 0.0096X2X' • 0.0004X IX ' 

The quadratic polynomial models for EPA+DHA incorporation in 80 ( Y' t and EPO 

1 Yr.l are given below: 

y ~ = -34.3671 + 0. 1731 XI + 1.6-+82X2 + 0.860 I X; - 0 .0002XI::. 0.0 !79X2::- 0.0 I lOX •2 

- 0.0005XIX2 • O.OOOJX2X1 + O.OOlOX1X' 

Yo= -21.7043 + 0 .0945XI + !.5779X.! + 0.6489X;- O.OOOIX1
2 

• 0.0172X2
2

- 0.0!03X;2 

- 0 .0004X1X2- O.OOIOX.!Xl- O.OOO?X1XJ 

Canonical analysis was performed on the predicted quadratic polynomial models to 

examine the overall shape of the response surface curves and used to chara~o:terize the nature 

of the stationary points. This is a mathematical approach used to locate the stationary 

point of the response surfaces and to determine whether it represents a maximum. 

minimum or a saddle point (Montgomery, 1991 ). Thus. to determine the nature of the 

stationary points. canonical analysis was carried out on the second order polynomial 



modds. The ~.:anonical forms of the equations for DHA-enriched BO ( Y 1 1. DHA-enriched 

EPO 1 Y: 1. EPA-enriched BO 1 Y: 1. EP.-\-enriched EPO 1 Y .. 1. EP.-\+DHA-enriched 80 

1 y,l and EPA+DHA-enriched EPO 1 Y,.,J were: 

. ' . 
Y: = 31.91- o.ssw~- -0.78W:- -t.J.nv,-

Y - ~ "i I I , '6H f ; " " I H : ; - ~OW : _. - __ . - _ . -t n 1 - _, • _, n : -) . _ _1 

' ' ' 
Y'::: 35 .85 - 1.!9W ~- -2.56W :· --t 12\V ,-

Y,., = 34.30- 0. 77W 1: -1 .71 W ; 2 -3.91 W ,: 

where W 1. W: and W : are th\! axes of the response surface. lt is evident that all the 

eigenvalues were negative indicating that the stationary point was a maxtmum 

1 \-lontgomery. 1991 l for Y 1. Y :. Y '· Y .:. Y' and Y ,.,. 

The linear. quadratic and cross product terms m the second order polynom1als 

were used to generate three dimensional response surface graphs and two-dimensional 

contour plots tfigures 4.21 - 4 . .26) of DHA. EPA and EPA+DHA incorporation into the 

oils. While these three dimensional graphs can assist the researcher to determine the 

direction to take to increase a desired response and graphically show the nature of the 

fitted surface as maximum. minimum or a saddle point. it is difficult to determine levels 

of variables to afford a specific DHA. EPA or EPA+DHA incorporation 1 q.) from such 

graphs. This can be more readily achieved from contour plots of the same variables. 
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Three-dimensional response surface and two-dimensional contour plot 
illustrating the effects of amount of enzyme and reaction temperature on 
the predicted DHA incorporation(%) in borage oil (80) 
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Figure 4 . .2.2 Three-dimensional response surface and two-dimensional contour plot 
illustrating the effects of amount of enzyme and reaction temperature on 
the predicted DHA incorporation(%) in evening primrose oil tEPOl 
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Figure 4 .23 Three-dimensional response surface and two-dimensional contour plot 
illustrating the effects of amount of enzyme and reaction temperature on 
the predicted EPA incorporation (%) in borage oil ( BO) 
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Figure 4.24 Three-dimensional response surface and two-dimensional contour plot 
illustrating the effects of amount of enzyme and reaction temperature on 
the predicted EPA incorporation(%) in evening primrose oil (EPO) 
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Figure 4.25 Three-dimensional response surface and two-dimensional contour 
plot illustrating the effects of amount of enzyme and reaction 
temperature on the predicted EPA+DHA incorporation ( '7c ) in 
borage oil ( 80) 
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Figure 4.26 Three-dimensional response surface and two-dimensional contour plot 
illustrating the effects of amount of enzyme and reaction temperature on 
the predicted EPA+DHA incorporation(%) in evening primrose oil (EPQ) 
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examples of which are shown in Figures -L21 - -L26. In a contour plot. curves of equal 

response values are drawn on a plane \Vhose coordinates represent the levels of the 

independent variables. Each contour represents a specific value for the height of the 

surface. above the plane defined for combination of the levels of the independent 

variables. Therefore. different surface height values enable one to focus attention on the 

levels of independent variables at which changes in the surface height occur. The contour 

plots illustrate the combination of levels of enzyme. reaction temperature and reaction 

time that can afford the same amount of DHA. EPA and EPA+DHA incorporation 

1 Figures ~.21 - ~.26 l. 

Critical values for the three variables 1 enzyme level. reaction temperature and 

timel v.·ere within the experimental reg10n 1Table ~.20) . The stationary point for the 

extent of DHA incorporation 1 '!c l into BO by acidolysis. reaction predicted a maximum of 

3~.1 Clc at 165 units of Candida antarctica enzyme at 50"C over a period of 25 h 1 Table 

~.201. On the other hand. in EPO. the ma:'timum DHA incorporation of 32.0'7C was 

predicted at 162 units of Candida antarctica enzyme at ~YC over 27 h. The stationary 

point for EPA incorporation in BO predicted a maximum of 36.1 Clc at 309 units of 

Pseudomonas sp. enzyme at ~0°C over 27 h. However. in EPO. the maximum EPA 

incorporation of 35 .1 CiC was predicted at 299 units of Pseudomonas sp. enzyme. 

incubation temperature of ..W"C and reaction time of 25 h: for total EPA+DHA 

incorporation ( 9c) into 80 a ma:dmum of 369C was predicted at corresponding values of 

278 units. ~2°C and 26 h. respectively. In EPO. values for maximum EPA+DHA 



Table 4.20 Canoni(;al analysis of response surfact!s 

factor 80, DHA (%) EPO, DHA (%) BO, EPA(%) EPO, EPA(%) 80, EPA+DIIA (%) EPO, EPA+DIIA (<;H 

x, 165 162 J()l) 2l)l) 27X 2lJ9 

x2 50 43 40 44 42 4] 

X] 25 27 27 25 26 24 

I..J -Stationary point Maximum Maximum Maximum Maximum Maximum Maximum (.C., 

Predicted valuea 34.1 32.0 36. 1 35.1 36.0 343 

Observed valuc11 35.6 ± 1.7 33.5 ± O.H 35.4 ± 0.5 .H .9 ± 1.7 35.5 ± 2.6 J3.ll ± I .X 

X I :=Amount of enzyme (units); x2 = Reaction temperature ("C); X\ = Reaction time (h); "Predicted using the polynomial modd; 

"Mean ± SO of triplicate determinations from different experiments 
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incorporation uf 34.3l( \\ere predicted at 299 units of Pseudvnumas sp. enzyme. 43.:~C 

and 24 h. 

The contour plot derived from the result of canonical analysis showed ellipsoidal 

comours at the maximum point 1 Figures -L~ I - 4 .26). Results of independent experiments 

carried out to examine the adequacy of the predicted values by the models were very 

dose to those observed for responses 1Table 4.20) . These verification results revealed that 

the predicted values from the models \\-·ere reasonable and reproducible. Therefore. 

acidolysis of 80 and EPO '1.\'ith DHA by Candida alltarctica lipase can increase the 

incorporation of DHA up to 35.6 and 33.5'7c. with process yields of 80.5 and 85.1 %. 

respectively. Similarly. acidolysis of 80 and EPO with EPA by Pseudomonas sp. lipase 

may increase the incorporation of EPA up to 35.~ and 33.9%. respectively. The process 

yields of EPA-enriched BO and EPO were 89A and 82.3 %, respectively. On the other 

hand. acidolysis of 80 and EPO with EPA+DHA by Pseudomonas sp. lipase can increase 

the total EPA+DHA incorporation to 35 .5 and 33 .6%. with process yields of 78.5 and 

71. I 0 c. respectively. 

Xu era/. 1 2000l used RSM to optimize the production of SL from menhaden oil 

and caprylic acid ( 8:0) in a packed bed reactor. Effects of parameters such as residence 

time. substrate mole ratio and reaction temperature were investigated. The residence time 

was considered the most imponant factor. Under optimum conditions. the SL contained 

38.8% caprylic acid and 29.0% EPA and DHA. Previously. Shieh et al. ( 1995) had 

reponed the synthesis of SL by acidolysis of triolein and capric acid ( 10:0). Reaction 



time. temperature. mole ratio and enzyme load were optimized. A total yield of ~.:omb i ned 

mono- and dicaprookin of up to 100°c was obtained. Meanwhile. optimization of 

synthesis of SL by transesterification of ethyl caprylate and soybean or suntlO\.\'er oil was 

reported by Huang and .-\koh 1 1996al. Cnder optimum conditions. 67.6c:'c caprylic acid 

was incorporated into TAG of oils . 

.a . .a Separation of acylglycerols of enzymatically modified oils 

DHA-enriched oils. produced under optimum reaction conditions. were separated 

and quantified by thin layer chromatography-name ionization detection 1TLC-FIDL The 

results showed that the relative coment of triacylglycerols (TAG; 87.9-8H.5ct J was much 

higher than that of diacylglycerols ( DAG: 2A-8.8%) and monoacylglycerols 1 \1.-\G: 2.6-

9.79cL ~o free fatty acids IFFA) were found since these were removed by the ~aOH after 

acidolysis reaction !Tables 4.21 and ~.22l. The fatty acid composition of the isolated bands 

was analyzed by gas chromatography (Table ~.21 and 4.22). In DHA-enriched 80. the 

coment of DHA in the TAG. DAG and MAG fractions was 35.4. 26.0 and 18.7q., 

respectively. with that of GLA was 16.1. 15.0 and 8.3%. respectively. Linoleic acid 1 LA) 

was mainly found in the TAG 1 25.2q.) and DAG fractions (28.8%) (Table 4.21\. On the 

other hand. in DHA-enriched EPO. the content of DHA in TAG. DAG and ~lAG was 33.2. 

30.6 and 24.2%. respectively with corresponding GLA contents in TAG, DAG and ~lAG of 

7.6. -1-.3 and 12.5%. respectively. LA predominanted in all acylglycerol fractions (Table 

4.22). 



Table ~.21 

Fatty acid 

1~ :0 

16:0 

16: 1 

18:0 

18: I 

18:2c.OO 

18:3<00 

18:3w.3 

20: I 

20:2 

22:0 

22: 1 

22:6w.3 

Fatty acid composition of acylglycerol components of DHA-enriched 
borage oil ( 80) separated after acidolysis by Candida antarctica lipase.l 

Lipid component ( 0 c) 

TAGb DAG ~AG 

t88 .5 ± 0.67) t8.80 ± 0 .82) ( 2.60 ± 1.20l 

0 .10 ±0.05 0.12::!: 0.01 1.17 ± 0.12 

5.33 ± 0 .04 8A7 ±0.02 9.69 ± 0.06 

0 .20::!: 0 .02 0.23 ±0.06 2. 13 ±0.09 

2.10 ± 0.20 3.86 ± 0.21 6.3~ ± 0.07 

11.3 ± 0.52 1~ .8 ±0.50 16.8::!: 0.67 

25.2 ± 1.20 28.8 ± 0.89 19.7±0.55 

16.1 ± 0.97 15.0 ±0.20 8.33 ± 0.92 

0 .20 ±0.05 0 .20 ±0.06 0.99 ± 0. 10 

2.52::!: 0 .20 3.71 ±0.06 3.53::!: 0.24 

0.13 ± 0 .07 0.22 ±0.05 1.02 ±0.39 

0 . 12::!: 0.04 0.21::!: 0.08 0 .22 ±0. 10 

1.24 ± 0.10 2.45 ±0.06 4.35 ±0.59 

35.4 ± 1.24 26.0 ± 0.78 18.7±0.75 

J.DHA-enriched borage oil was prepared under optimum reaction conditions 
( 165 enzyme units. 50°C, 25 h) 

t>r AG. triacylglycerols; DAG. diacylglycerols; MAG. monoacylglycerols 



Table -+.22 

Fatty acid 

14:0 

16:0 

16:1 

18:0 

18:1 

18:2@ 

18:3@ 

18:3w3 

20:1 

22: l 

22:6ro3 

,.,., 

Fatty acid composition of acylglycerol components of DHA-enriched 
evening primrose oil i EPO) separated after acidolysis by Candida antarctica 
lipase.! 

Lipid component 1 9c ) 

TAGb DAG ~tAG 

(87.9 :t 2.71) ( 2.-+0 :t 0.55) 19.70 :t 1.80) 

0. 12 :t 0.03 0.31 :t 0.0 I 0. 13 :t 0.02 

3.52 :t 0.-+1 2.69 :t 0 .01 3.78 :t 0.61 

0.06 :t 0.02 0 .23 :t 0 .06 0. 19 :t 0.04 

1.31 :t 0.55 0 .75 :t 0 .21 1.-+9 ±0.23 

-+.53± 0.25 -+.16 :t 0 .50 5.-+5 ±0.35 

48.5±1.18 55.1 ±0.91 46.8 :t 1.41 

7.60 :t 0.57 -+.32 :t 0 .61 12.5 :t 0.62 

0.21 ±0.02 0.23 ±0.04 0.22 ± 0.02 

0 .21 ±0.21 0.15 ±0.07 0.31 :t 0.05 

0.13 ±0.05 NO..: ~IY 

33.2 ± 0.65 30.6 ± 0 .78 24.2 ± 0.54 

.IDHA-enriched evening primrose oil was prepared under optimum reaction conditions 
( 162 enzyme units. 43°C. 27 h) 

boy AG. triacylglycerols: DAG. diacylglycerols: MAG. monoacylglycerols 
cNot detectable 



In another study. EP.-\-t:nriched oils \vere separated and quantified by TLC-FID 

1 Tables ~.23 and ~-2~ l. The TAG fraction 185. 1-95. 1 q. l was again much higher compared to 

DAG 1 .l2-I J.2<c i and :\tAG 1 1.7-3.7°c l fractions. similar to that observed for DHA-enriched 

oils: FFA were not detected in modified oils as these were removed by SaOH after the 

acidolysis reaction. In EPA-enriched 80. TAG. DAG and :VtAG fractions contained 32.5. 

28.2 and 30.8c-c EPA. n:spectively. LA was the major fatty acid found in all three acylglycerol 

fractions 1T.-\G. DAG and \tAGl at 26.2. 29.1 and 28.2cc. respet.:tively . The content of GLA 

found in TAG. DAG and \1.-\G fractions was 11.0. 15. 1 and 18.7°c. respectively. In EPA

enriched EPO. the amount of EPA found in TAG. DAG and \tAG were 33.2. 25 .6 and 

28.9'1-. respectively. LA was the predominant fatty acid found in all three frat.:tions (..W.5C7c in 

TAG: ~9.1 cc in DAG: ~7A0c in \1AGl. The amount of GLA present in TAG. DAG and 

\tAG was 7.5 . 8 .7 and 8.80'c. respectively. 

The EPA+DHA-enriched oils. produced under optimum reaction conditions. were 

also analysed by TLC-FID. The TAG (89-910'cl were dominant and present at a much higher 

amount than DAG (8 .5-9.0'7c) and \tAG 10.3-1.8'1-J (Tables ~.25 and -L26J. The fatty acid 

composition of the isolated TLC bands were analyzed by GC (Tables ~.25 and ~.26) . The 

results showed that EPA (26%) was mainly located in TAG fractions of EPA+DHA-enriched 

80 and EPO. The contents of GLA and DHA in TAG fractions of these oils were 7.6-17. 1 

and 7.9-9.6'7c. respectively. The contents of GLA and DHA in DAG fractions were 9 .0-22.7 

and 11 C}; , respectively. However. the content of EPA in DAG fractions was negligible. The 

contents of GLA. EPA and DHA in the MAG fraction were 9A-19.6. ~.2-7 .3 and SA-9.8%. 

respectively. 



Table -'-.23 

Fatty acid 

12:0 

1-'-:0 

16:0 

16:1 

18:0 

18: I 

18:2c.OO 

18: 3c.OO 

18:3w3 

20:0 

20: 1 

20:2 

20:5w3 

22:1 

24: 1 

Fatty acid composition of acylglycerol components of EPA-enriched 
borage oii!BOl separated after acidolysis by Pseudomonas sp. lipase.l 

Lipid component ( '7o ) 

TAGb DAG ~lAG 

195.1 ±0.53) (3 .20 ± 0.85) ( 1.70 ± 1.06) 

0.16 ±0.02 0. 19 ± 0.06 0.04 ± 0.01 

0.1-'- ±0.07 0. 11 ±0.03 0.05 ±0.02 

6.50 ± 0.41 5.21 ± 0.25 3.85 ± 0.64 

0.-'-7 ± 0 .22 0.35 ± 0.13 0.07 ±0.04 

2.86 ± 0.40 2. 14 ± 0.16 1.57 ±0.72 

12.0 ± 0.38 11.5 ± 0.63 10.8 ±0.42 

26.2 ± 0.85 29.1 ± 1.34 28.2 ± 0 .39 

11.0 ± 0.42 15.1 ±0.10 18.7±1.07 

0. 17 ±0.07 0.12 ±0.05 0.15 ± 0.06 

0.25 ±0.03 0. 10 ±0.05 0. 15 ± 0.07 

3.02 ± 0.52 2.60 ±0.60 1.50 ± 0.43 

0.19 ± 0.05 0.17 ± 0.06 0.12 ±0.09 

32.5 ± 1.04 28.2 ±0.84 30.8 ±0.89 

2.08 ±0.40 1.24 ± 0.67 1.19 ± 0 .26 

!.25 ± 0.31 1.05 ±0.52 0.6 1 ±0.53 

.}EPA-enriched borage oil was prepared under optimum reaction conditions 
(309 enzyme units. 40°C. 27 h) 

t>-rAG. triacy1glycero1s: DAG. diacylglycero1s; MAG, monoacylglycerols 



Table -l-.2-t. 

Fatty acid 

12:0 

1-t.:O 

16:0 

16:1 

18:0 

18: I 

18 :2<.00 

18:3<.00 

18:3<03 

10:0 

10:1 

20:5<03 

22: 1 
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Fatty acid composition of acylglycerol componems of EP.-\-enriched 
evening primrose oil ( EPOl separated after acidolysis by Pseudonwnas sp. 
lipaseJ 

Lipid component ( ac l 

TAGb DAG ~tAG 

(85.1 ± 0.88) ( 11.2 ± 0 . 71 ) ( 3.70 ± 0.50 l 

ND.: 0 .08 ±0.04 0.-t.O ±0.02 

0.07 ±0.02 0.15 ±0.06 0.26 ± 0.12 

-t-.60 ± 0.25 3.54 ± 0.25 2.95±0.1 7 

0.12 ± 0.06 0.13 ± 0.08 0.15 ± 0.09 

1.70±0.-t.l 2.8-t. ± 0.-t-6 3.70 ± 0.6-t. 

6.91 ± 0 .52 6.83 ± 0.90 6 .57 :t: 0.59 

44.5 ± 1.84 -l-9. 1 ± 1.-t-6 -t-7.-1- ± 1.08 

7.50 ± 0.47 8.71 ±0.59 8.75 ± 0 .92 

0.17 ±0.10 0.15 ±0.07 0.10 ±0.07 

0.31 ± 0 .07 0.15 ± 0.04 0.10 ±0.03 

0.28 ±0.04 0.18 ±0.06 0 .20 ±0.05 

33.2 ± 1.45 25.6 ± 1.80 28.9 ±0.72 

0.11 ± 0.05 :'liD.: ~IY 

!EPA-enriched evening primrose oil was prepared under optimum reaction conditions 
( 299 enzvme unilS. 44°C, 25 h) 
~ AG. tri~cy1g1ycerols: DAG. diacylglycerols: MAG. monoacy1glycerols 
~~ot detectable 



Table -+.25 

Fatty acid 

10:0 
12:0 
14:0 
16:0 
16:1 
18:0 
18: I 
18:2w6 
18:3@ 
18:3w3 
20:0 
20: I 
20:2 
20:4 
20:5w3 
22:1 
24: I 
22:6w3 

Fatty acid profile of acylglycerol components of EP:\+DHA enriched 

borage oil ( BOl separated after acidolysis by Pseudvmmws sp. lipase~ 

Lipid component < 9C l 

TAGb DAG ~tAG 

(91.2±0.68) (8 .50 ±0.64) ( 0.30 ± 0.07) 

0.05 ± 0.01 0.05 ± 0.01 ~o-

0.04 ± 0.02 0 .06 ±0.05 ~o-

0.04 ± 0.01 0.06 ±0.02 0.37 ± 0 .02 
5.06 ±0.56 6.92 ±0.22 6.84 ± 0.27 
0.38 ± 0.32 0.15 ±0.04 ~D' 

2.05 ±0.01 2.60 ±0.56 3.52 ± 0.50 
10.9 ± 0.09 1-+.6 ± 0.10 11.7 ± 0.35 
22.5 ± 0.33 34 . .3 ± 0 .52 27.7 ± 0.87 
17. 1 -:!: 0. 19 22.7-:!: 0.20 19.6 ±0.90 
0 .04 ±0.02 0.17 ±0.03 0.91 ±0.07 
0.14 ± 0.01 ND' ~D.: 

2.61 ±0.02 3.43 ±0.12 2.55 ± 0.52 
0 .13 ± 0.02 0. 17 ±0.04 ~D.: 

0.56 ±0.01 NO' ~D' 

25.9 ± 0.20 0.50 ±0.07 -+.23 ± 0.55 
1.24 ±0.20 2.09 ± 0.13 2.66 ± 0.62 
0.83 ±0.01 1.15 ± 0.25 -+.11±0.33 
9.60 ±0.02 11. 1 ±0.89 9.83 ± 0.51 

.lEPA+DHA enriched borage oil was prepared under optimum reaction conditions 

(278 enzyme units, 42°C. 26 h) 

"TAG. triacy1glycerol: DAG. diacylglycerol: MAG. monoacylglycerol 

.:~ot detected 



Table 4- .26 

Fatty acid 

10:0 
12:0 
14-:0 
16:0 
16: 1 
18:0 
18: I 
18:2(1)6 
18:3w6 
18:3w3 
20:0 
20: I 
20:4 
20:5w3 
22: I 
22:6w3 
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Fany acid profile of acylgtycerol components of EPA+DHA enriched 

~vening primrose oil t EPOl separated after acido1ysis by Pst!wlamvnas sp. 

lipase.l 

Lipid component ICC 1 

TAGb . DAG MAG 

!89.2 ±0.51) t9.00 ± 0 .95) ( 1.80 ± 0.64) 

0 .04 ± 0.04 0.50 ±0.02 0.14- ± 0.02 
0.04 ±0.01 0.07 ±0.03 1.51 ±0.03 
0 .02 ± 0.01 0 .05 ±0.01 0.23 ± 0.03 
3.25 ± 0.06 -t.62 ± 0 .46 4-.46 ± 0 .50 
0.07 ±0.02 0.06 ±0.02 ~D..: 

1.15 ± 0.02 1.32 ± 0 .23 1.32 ± 0 .04 
6 .7-t ± 0.05 8.96 ± 0.53 7.-+4 ± 0.07 
-t5 .7 ± 0 . 10 62. 1 ± 1.21 54.6 ± 0 .55 
7 .63±0.01 8.96 ± 0.46 9.38 ± 0 .26 
0.13 ± 0 .05 0.16 ±0.02 ~o..: 

0.21 ±0.06 0.28 ± 0 .08 ~D..: 

0.29 ±0.02 0.2 ! ±0.06 ~D..: 

0.58 ±0.02 ND..: ~D..: 

25 .7 ±0.90 0.59 ±0.06 7.27 ±0.28 
0 .33 ± 0.06 0. 16 ±0.21 0.65 ±0.30 
7 .91 ±0.50 11.3 ± 0 .53 8.40 ± 0.76 

lEPA+DHA enriched evening primrose oil was prepared under optimum 

reaction conditions ( 299 enzyme units. 43°C. 24 h) 

~ AG. triacylglycerol: DAG. diacylglycerol: MAG. monoacylglycerol 

~~ot detected 



-&.5 Stereospecific analysis of triacylglycerols IT.-\G) of DHA. EPA and 

EPA+DHA-enriched oils 

Stereospecific analyses of DHA. EPA and EPA+DHA-enriched 80 and EPO and 

the intermediates involved are -.;hown in Figure -L27. In the first step. TAG of both oils 

were hydrolysed by porcine pancreatic lipase in order to split fatty acid!' at the Hz-1 and 

.m-3 positions. yielding 2-MAG. which accurately provides the fatty acid composition of 

the sn-2 position of TAG. In the second step. TAG of both oils were modified by 

Grignard degradation using methyl magnesium bromide 1 CH ,~tgBrl. Laakso and Christie 

1 !9901 and ~wosu and Boyd 1 1997) used Grignard reaction to obtain partially deacylated 

acyl glycerols. ln this reaction. the electrons in the C=O bond 1 sigma and pi) of the 

carbonyl groups in TAG are drawn towards the electronegative oxygen atom 1 Figure 

~.28 1 and the carbon atom of the carbonyl group with a partial positive charge can be 

attacked by the nucleophilic carbon of the Grignard reagent. The products of the reaction 

are a ketone and a magnesium salt of acylglycerol. In the presence of an aqueous acid. the 

magnesium salt of acylglycerols yields acylglycerols and an inorganic magnesium 

bromide 1 Figure ~.28 ). The resulting ketone reacts further with the Grignard reagent to 

yield a tertiary alcohol and an inorganic magnesium bromide. The products of the 

Grignard degradation of TAG may be separated on TLC plates 1 Figure 3.5) to afford 

MAG 1 Rr = 0.051. 1.2- and 2.3-DAG (Rr = 0.32). 1.3-DAG (Rr = OA l l and a tertiary 

alcohol 1 Ri = 0.72). Among these. the band with an Rc value of 0.32 11.2- and 2.3-DAG) 

was isolated and used to prepare synthetic racemic phosphatides via reaction with 
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Figure 4.27 Procedure for the stereospecific analysis of triacylglycerols (TAG) of 
DHA. EPA and EP A+DHA-enriched borage ( BO) and evening primrose 
oils !EPO) 
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Figure -+.28 Chemical reactions involved during Grignard degradation of 
triacylglycerols !TAG) of DHA. EPA :.1.nd EPA+DHA-enriched borage 
\ 80) :.1.nd evening primrose oils ( EPOl 
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Liichlorophenylphosphate 'Figure -L271. This reaction produced 1.2-diacylglycero-3-

phosphatide 1. L-isomen and 2.3-diacylglycero-1-phosphatide ( D-isomen w·hich were 

subsequently hydrolysed by stereospecific phospholipase A:!. This enzyme reacts only 

with 1.2-Jiacylglycero-3-phosphatide ( L-isomer: naturally presentl and releases FF A 

from the sn-2 position 'Yerheij and Dijkstra. 1994 ). The products of phospholipase A: 

hydrolysis 1 FFA from the s11-2 position and L-lysophosphatide) and the unchanged 2.3-

diacylglycero-1-phosphatide t D-isomer: unnatural) are subsequently separated on TLC 

plates <Figure 3.6l. The separated bands are those of FFA from the sn-2 position of 1.2-

diacyl-3-phosphatide < R1 == 0. 78 ). unchanged 2.3-diacylglycero-1-phosphatide < R1 =0.51) 

and L-lysophosphatide ! Ri = 0.06). The band with an Rr value of 0.06 <L

lysophosphatide 1 was isolated. extracted imo chloroform/methanol ( I : I. v/v) and then 

used for fatty acid analysis. Tht!se allowed identification of the fatty acid composition at 

the sn-1 position of TAG of DHA. EPA and EPA+DHA-enriched BO and EPO. 

ln order to determine the fatty acid composition at the sn-3 position of TAG. a 

band with an Rr value of 0.51 (unchanged 2.3-diacylglycero-1-phosphatide) was isolated 

and extracted into chloroform/methanol < 1: 1. v/v ). The latter compound was subjected to 

porcine pancreatic lipase hydrolysis ! Figure 4.27). the products of which were 2-

monoacylglycero-1-phosphatide and the FFA released from the sn-3 position of TAG of 

DHA. EPA and EPA+DHA-enriched BO and EPO. 



-'.5.1 Positional distributions of fatty acids of DHA. EPA and EPA+DHA·enriched 

oils 

The positional distribution of fatty acids in TAG of DH.-\-enriched oils ""·ere 

determined 1 T;1bles -L!7 and -L28 ). The results of this study shmved that DH.-\ was fairly 

evenly distributed over all three:! positions ( 3-+.6CC at .m-l. 33 .5CC at sn-2 and 35.9c:-c at srz-

3) of TAG molecules of DHA-enriched 80 I Table -+.27 ). ln DHA-enriched EPO. 

however. this fatty ac1d wa..s mainly esterified at the sn-2 position <38.2'!- l tTable -+.28 ). 

The positional specificity of Candida antarctica depends on the type of reactants. ln some 

reactions. this enzyme functions as a nonspecific lipase whereas in other reactions it 

shows .m-1.3 positional specificity ! Novo Nordisk. 1999). The results showed that under 

;1ssay conditions employed in this study. this enzyme acts as ;1 nonspecific lipase. ln 

DHA-enriched 80. the saturated fatty :1cids 16:0 and 18:0 favoured the sn-2 position. 

Howeva. in DHA-enriched EPO. these fatty acids were concentrated in the sn- 1 and sn-3 

positions. The stereospecific distribution of fatty acids in the native BO and EPO have 

previously been determined (Lawson and Hughes. 1988: Redden ec af.. 1995). In 80. GLA 

was distributed asymmetrically and preferentially esterified at the sn-2 and sn-3 positions 

1 Redden et al.. 1995: Lawson and Hughes. 1988). In EPO. GLA ""as found to be 

concentrated in the sn-3 position. LA was nearly evenly distributed in all positions of EPO. 

but was concentrated in the sn-1 position of BO lLawson and Hughes. 1988). In DHA

enriched BO. GLA was mainly located in the sn-2 ( 18.4%) and sn-3 ( 19.2c;:c ) positions of 

TAG !Tables -+.27). In DHA-enriched EPO. however. GLA was concentrated in the sn-2 
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Table ~ . 27 Positional distribution of fatty acids in DHA-enrkhed borage oil ( B01~ 

Fatty acids TAG sn-1 sn-1 sn-3 
(w/w <1-l 
8:0 0.04 ± 0.01 0.08 ±0.03 ~Db 0.05 ±0.02 
10:0 0.15 ±0.02 0.17 ±0.02 0.07 ± 0.02 0.30±0.02 
12:0 0.16 ± 0.03 0.12 ± 0.06 0.10 ± 0.05 0.19 ±0.08 
14:0 0.09 ± 0.01 0.05 ±0.03 0.08 ± 0.04 0. 11 ± 0.03 
14:1 0.04 ± 0.01 0.02 ± 0.01 ~Db 0.06 ±0.02 
16:0 ~.33 ± 0.57 3.90 ±0.33 ~.52± 0.52 3.50 ± 0 .05 
16: I 0. 19 ± 0 .03 0. 12 ± 0.08 0.17 ± 0.05 0.23 ± 0.10 
17:0 ~Db 0.02 ±0.01 NDb 0.04 ±0.02 
17:1 0.21 ± 0.07 OA5 ±0.08 :"~Db 0.15 ±0.01 
18:0 2.09 ± 0.15 1.12 ± 0.21 2.92 ± 0.07 1.95 ± 0.30 
18: I 12.3 ± 0.50 12.3 ± 0.56 11.7 ± 0.82 8.2~ ±OAO 
18:2<.00 2~.7 ±0.90 23.9 ± 1.08 21.8 ± 1.57 25.3 ± 0.37 
18:3<.00 16.1 ± 0.26 13.2 ± 0.38 18A±0.85 19.2 ±0.51 
18:3013 0.19 ± 0.09 0.27 ±0.08 0.17 ±0.06 0.10 ± 0.07 
20:0 ~b 0. 11 ± 0.04 0.22 ±0.05 ('l,j"Db 

20: I 2.12 ± 0.20 2.79 ± 0.46 2.70±0.10 1.09 ± 0.31 

20:2 0. 13 ± 0.07 0 .23 ± 0.10 0. 12 ±0.30 0.08 ±0.04 
22:1 1.24 ± 0.08 1.77 ± 0.14 1.90 ±0.09 0.72 ± 0.07 

22:6013 35.3 ± 1.50 34.6 ± 0.85 33.5 ±0.15 35.9 ± 0.7~ 

24:1 0.47 ±0.09 0.89 ±0.12 0.11 ±0.06 0.41 ±0.09 

~Mean ± SD of triplicate determinations from different experiments: bNot detected 



Table ~.28 

Fatty acids 
tw/w C7c) 

12:0 

14:0 

14:1 

16:0 

16: I 

18:0 

18: 1 

18:2w6 

18:3w6 

18:Jw.3 

20:0 

20: I 

22: I 

22:6(1)3 

Positional distribution of fatty acids in DHA-enriched evening primrose oil 
(EP0).1 

TAG sn-1 511-2 :m-3 

0 .12 ± 0.08 0.15 ±0.02 0.13 ± 0.02 0.08 ±0.04 

0.12 ±0.05 0.09 ±0.02 0.13 ± 0.04 0.17 ±0.04 

0.08 ±0.02 0 . 12 ±0.01 0.08 ±0.05 0.07 ± 0.03 

7.55 ±0. 17 7.81 ± 0.35 3.74±0.41 10.6 ± 0.73 

0.06 ±0.02 0.08 ±0.04 0. 17 ±0.04 ;..rob 

2.31 ± 0.42 2.90 ± 0.51 1.47 ± 0 .26 3.97 ± 0.59 

4.63 ±0.35 7.81 ±0.16 1.49 ± 0.54 3.20 ± 0.61 

-+3.4 ± 0.64 ~5.1 ± 0.97 -+4.9 ± 0 .59 ~ 1.5 ± 0.88 

7.05 ±0. 15 5.48 ±0.56 7.-+9 ± 0.82 -+.79 ± 0.51 

0.21 ±0.06 0.29 ± 0.03 0.23 ± 0.05 0.08 ±0.04 

0.50 ±0.12 0.42 ±0.08 0 .31 ±0.04 0.59 ± 0.11 

0 .29 ±0.16 0.14 ± 0.05 0 .36 ±0.06 0.36 ± 0.17 

0.13 ± 0.04 0.15 ± 0.05 0.17 ± 0.03 0.12 ±0.06 

33.1 ± 0.70 24.5 ± 0.72 38.2 ± 0.52 33.1 ±0.87 

;lMean ± SD of triplicate determinations from different experiments: bNot detected 
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17 .5c:-c l position 1 Table -+.28 l. LA \va..-; randomly distributed over the three positions of TAG 

of both oi Is. 

L~e anJ Akoh tl9961 performed pancreatic lipase hydrolysis on a SL synthesized 

\·ia interesteritlcation reaction between medium chain triacylglycerol 1 \tiCT) and EPA ethyl 

ester using GmJida amarcti<.:a lipa....;e a..-; the biocatalyst. Their results showed that EPA was 

mainly incorporated in the s11-2 position of the TAG. This demonstratt:d that CunJiJa 

umarcrica lipa..-;e has a high specitlcity for sn-2 position under experimental conditions 

employed by these researchers. 

In another study. the positional distribution of fatly Jcids in TAG of EPA-enriched 

oils was determined and the results are shown in Tables 4.29 and 4 .30. The saturated fatty 

acids 16:0 and 18:0 \vere concentrated at the sn-2 position ofT AG of EPA-enriched oils. 

The EPA of EPA-t>nnched BO was randomly distributed in the TAG 1 33A'lo at sn-1: 

32.5C:C at sn-2: 30.9q. at sn-3l tTable 4.29). [n EPA-enriched EPO. however. this fatty 

acid was mainly esterified at the primary positions ( 39.5% at sn-! and 42. 1% at sn-3) of 

TAG tTable 4 .30l and was also present in appreciable amounts 123.2%) at the sn-2 

position. Therefore. it is assumed that Pseudomonas sp. lipase shows no specificity and 

may incorporate EPA in all three positions of TAG of the oils. ln both oils. GLA was 

esterified preferentially at the sn-2 position < 18.6 and 7.2% in EPA-enriched BO and 

EPO. respectively I. in EPA-enriched BO. LA in TAG was distributed randomly while in 

EPA-enriched EPO it was mainly located at the sn-2 position (Tables -+.29 and 4 .30). 

The positional distribution of fatty acids in TAG of EPA+DHA-enriched oils 
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Table -L29 Positional distribution of fatty acids in EPA-enriched borage oil t BO , .. 

Fatty acids TAG sn-1 sn-2 sn-3 
(w/w q., 

8:0 0.03 ±0.01 0.09 ± 0.04 NOb ~Db 
10:0 0.03 ± 0.01 0.02 ± 0.01 0.04±0.02 0.04 ±0.02 
I :!:0 0. 16 ±0.05 0.19 ±0.06 NDb 0.28 ±0.09 
1~:0 0.13 ±0.07 0.05 ±0.02 0.05 ±0.03 0.33 ± 0. 1~ 

14: I 0.02 ±0.01 0.04 ±0.02 NDb 0.06 ±0.02 
16:0 6.45 ±0.21 4.31 ± 0.15 8.82 ± 0.18 4.75 ± 0.46 
16: 1 0.47 ±0.07 0.58 ± 0.13 0.08 ±0.05 0.69 ±0.11 
18:0 1.85 ± 0.23 0.84 ±0.15 1.95 ± 0.43 0.69 ±0.21 
18: I 11.6 ± 0.52 10.3 ± 0.52 10.8 ± 0.35 1~ .5 ± 0.74 
18:2(00 22.2 ± 0.91 23.6 ±0.91 21.2 ± 0.42 20.2 ± 0.83 
18:3c.OO 15.1 ±0.82 11.5 ± 0.34 18.6 ± 0.63 13.4±0.1 2 
18:3w.3 0. 17 ±0.05 0.14 ±0.09 NOb 0.30 ±0. 15 
20:0 0.27 ±0.06 0.54 ±0.16 NDb 0.13 ±0.06 
20:1 3.00 ±0.09 2.15 ± 0.38 3.80± 0.04 3.18±0.38 
20:2 0.18 ±0.02 0.39 ±0.16 NDb 0.17 ±0.09 
20:4 0. 14 ± 0.05 0.08 ±0.03 NDb 0.45 ±0.05 

20:5w.3 32.7 ± 1.28 33.4 ±0.86 32.5 ± 0.79 30.9 ± 1.05 

22:0 0.17 ±0.09 0.04±0.02 0.11 ± 0.06 0.38 ±0.06 

22: I 2.05 ±0.11 3.58 ± 0.15 1.20±0.28 1.04 ±0.34 

22:5 0.07 ± 0.01 0.07 ±0.04 NOb 0.19 ±0.06 

24:0 0.05 ± 0.01 NDb NOb 0.29 ±0.13 

24:1 1.22 ± 0.08 0.24 ±0.05 0.58 ±0.24 2.77 ± 0.47 

JMean ± SD of triplicate determinations from different experiments: b~ot detected 



Tabie -tJO 

Fatty acids 
(w/w C.C> 

8:0 

10:0 

12:0 

1-l:O 

1-l: I 

16:0 

16:1 

18:0 

18: I 

18:1@ 

18:3@ 

18:3<.tl3 

10:0 

20:1 

20:2 

20:4 

20:5<.tl3 

22:0 

22: I 

22:4 

.,,_ 
-·" 

Positional distribution of farty acids in EPA-enriched evening primrose oil 
(EPO>.l 

TAG m-1 sn-2. sn-3 

ND6 0.08 ±0.03 ~06 0.10±0.~ 

0.03 ±0.01 0.09 ±0.02 0.03 ±0.02 0.04 ± 0.03 

NOb ~Db 0.40 ±0.08 ~Db 

0.06 ±0.02 0.09 ±0.04 0.05 ±0.05 0.08 ± 0.04 

~Db 0.04 ± 0.03 0.03 ±0.01 ~Db 

-l.55 ± 0.36 2.94 ± 0. 14 5.98±0.15 3. 18±0.52 

0.11 ± 0.05 0.11 ± 0.03 0.12 ± 0.04 0.08 ± 0.05 

1.65 ±0.49 0.08 ± 0.04 3.60 ±0.27 1.43 :!: 0.28 

6.92 ± 0.58 6.48 ± 0.67 8.54 ±0.44 5.3 1 ±0.40 

-l3.7 ± 1.71 39.1 ± 0.59 48.4 ±0.61 37.5 ± 0.75 

5.43 ±0.29 4.39 ± 0.54 7.16 ± 0.37 -l.84 ± 0.46 

0.16 ±0.07 0.08 ± 0.04 0.10 ± 0.04 0.28 ± 0.08 

0.31 ± 0.05 0.49 ± 0.1 7 0.20 ±0.04 0.26 ±0.12 

0.27 ±0.04 0.22 ± 0.08 0.19 ± 0.06 0.34 ±0.07 

NOb NOh 0.03 ±0.02 0.05 ± 0.02 

0.11 ± 0.02 0.2 1 ± 0.04 0.10 ±0.04 0.27 :!: 0.05 

35.1 ± 0.78 39.5 ± 0.86 23.2 ±0.58 42.1 ± 1.55 

NDb 0.04 ± 0.03 !\rob 0.03 ± 0.02 

0.11 ± 0.04 0.20 ± 0.06 NOb 0.24 ±0.07 

NDb NOb 0.08 ±0.05 NDb 

J.Mean ± SD of triplicate determinations from different experiments: bNot detected 



were also determined and the results are gi\en in Tables 4.31 and 4.32. [n EP:\+DHA

enriched BO and EPO. saturated fatty acids such as 16:0 and 18:0 occurred mainly at the 

sn-1 and .m-3 positions of TAG. However. these modified oils were different in the 

dominancy and distribU£ion of w.3 and CJiJ PL:FA in their TAG molecules. ln EPA+DHA 

enriched 80. GL\ was mainly located at the sn-2 position !32.9°c l. However. EP.-\ and 

DHA were preferentially esterified at stz-1 and .m-3 positions of TAG molecules 1Table 

4 .31 1 and their quantities \vere EPA. 26.1 and 30.8'7c: and DHA. 8.3 and 9.8'1-. 

respectivdy. ln EPA+DHA enriched EPO. GLA was located mamly at the .m-2 ( I0.8cc 1 

and sn-3 !9.0c:-cl positions of TAG. EPA was preferentially esterified at the sn-1 !31.5%) 

and sn-3 ( 2~ . 1 q. 1 positions while approximately half of DHA was located in the sn-3 

position ! l0.5C:C 1 of TAG !Table ~.32). Therefore. lipase from Pseudomonas sp .. under 

the conditions used in this study. has the ability to incorporate w3 fa[[y acids (EPA and 

DHA 1 preferentially at the .wr-1 and .m-3 positions ofT AG. 

Brockerhoff et al. 1 1968 l reported that in fish oils the long-chain PUFA tend to be 

concentrated in the sn-2 position whereas in marine mammals they favour the sn-1 and 

sn-3 positions of TAG. Recently. Wanasundara and Shahidi 1 1997l reported similar 

results for seal blubber and menhaden oils. Aursand et a/. 1 1995) investigated the 

positional distribution of w.3 PUFA in fish and marine mammal oils using high resolution 

13C nuclear magnetic resonance 1 
13C ~MR) spectroscopy. These authors found that in 

tish oils DHA was concentrated in the sn-2 position while EPA was more randomly 

distributed over the three positions ofT AG. In seal oil. DHA was predominantly present 
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Table 4.31 Fatty acid distribution in different positions of triacylglycerols of 
EP:\+DHA enriched borage oil 1BOl.1 

Fauy acids TAG sn-1 sn-2 sn-3 
1 \..-/w C:c) 

8:0 0.02 ±0.01 :"iDb 0 .03 ± 0.02 0.-+0 ± 0 .0-+ 

10:0 0 .02 ± 0.01 ~'Db 0.05 ±0.03 1--+1±0.20 

12:0 0.05 ± 0.02 0.59 ±0.10 0.08 ± 0.03 1.38±0.51 

1-+:0 0.07 ± 0.05 0 .69 ±0.20 0.09 ±0.06 0.89 ± 0 .20 

16:0 5.06 ± 0.50 7.15 ±0.80 1.05 ±0.06 5.99 ± 0 .80 

16: I :"iDb ~Db 0.21 ±0.02 1.99 ± 0.30 

17:0 0.02 ± 0.01 ~b 0.05 ±0.02 0.22 ± 0 .05 

17:1 0 .20 ± 0.05 NOb 0.30±0.06 NDb 

18:0 2.21 ± 0.05 5.15±0.70 1.02 ± 0.50 2.76 ±0.50 

18: I 11.5 ± 0.-+0 12.8 ± 0 .80 14.1 ± 1.20 8.85 ± 1.00 

18:2w6 20.5 ± 2.00 22.9 ± 1.00 26.2 ± 2.60 15.3 ± 1.25 

18:3w6 16.9 ±0.70 -+. 12 ± 1.00 32.9 ± 1.50 15.1 ± 0.80 

18:3w.3 :"'"Db 3.71 ± 0.85 0.-+5 ± 0.04 0.64 ± 0.50 

20:1 2.94 ± 0.50 3.06 ±0.60 1.40 ± 0 .08 2.43 ± 0.60 

20:2 0.20 ± 0.04 NOb 0.12 ± 0.06 ~l)b 

20:-+ 0.63 ±0.05 NOb 1.43 ±0.50 0.14 ± 0 .05 

20:5w.3 25.9 ± 2.30 26.1 ± 1.50 15.2 ± 0.30 30.8 ± 2.50 

22:1 1.24 ± 0.40 3.49 ±0.80 0.77 ±0.05 1.07 ±0.50 

22:6ro3 8.50 ± 0.85 8.33 ± 1.01 3.77 ±0.80 9.8 1 ± 0.80 

aMean ± SO of triplicate determinations from different experiments : ~ot detected 



Table -L32 Fatty acid distribution in different positions of triacylglycerols of 
EPA+DHA enriched evening primrose oil (EP0)3 

Fatty acids TAG S/t-1 sn-2 sn-3 
(w/w cc) 

8:0 0.02 ± 0.01 0.35 ± 0.10 NDb 0.89 ±0.04 

10:0 0 .04 ±0.01 0.81 ± 0.03 0.03 ±0.01 o . .w ±0.20 

12:0 0.04 ± 0.01 0.49 ± 0.06 0.03 ±0.01 0.18 ± 0.51 

16:0 3.75 ± 0.40 3.43 ± 0.30 1.61 ± 0.05 4.10 ±0.80 

16:1 ~Db 1.06 ±0.20 0.07 ± 0 .01 0 .32 :t 0.30 

18:0 1.15 ± 0.50 1.49 ± 0.40 1.28 ±0.40 2.00 ± 0.05 

18:1 6.22 ± 0.80 2.14 ± 0.70 2.53 ±0.60 14.2 ± 0.70 

18:2<.00 45.6 ± 1.50 40.1 ± 2.40 61.0 ± 2.80 32.6 ± 1.50 

18:3<.00 8.59 ± 0.50 ~.22 ± 0.70 10.8 ±0.90 9.04 ± 1.10 

18:3w3 0.13±0.05 2.71 ± 0.50 0.33 ± 0.02 1.02 ±0.50 

20:0 ~Db 0.82 ±0.50 NDb ~b 

20: 1 0.40 ±0 . .20 1.38 ± 0.41 0.23 ±0.08 0.32 ±0.20 

20:.2 0.20 ±0.03 NDb NOb ~b 

20:4 0 .58 ±0.02 NDb NOb ~b 

20:5w3 25.0 ± 1.00 31.5 ± 2.00 17.2 ±0.30 24.1 ±0.60 

22: 1 0.37 ±0.03 0.92 ±0.06 NOb NDb 

22:6w3 7.91 ±0.91 5.80 ± 0.70 4.82 ±0.55 10.5 ± 1.00 

J\iean ± SD of triplicate determinations from different experiments: "Not detected 
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in the .m-1 and sn-3 positions 1 Wanasundara and Shahidi. 1997: Ikeda era/ .. 1998). Ando 

eta/. 1 19921 have also determined the positional distribution of fauy acids in the TAG of 

fish uils 1 capdin. h:!rring. menhaden. sardine and saury l by high-performance liquid 

chromatography using a chiral stationary phase and found that in these oils DHA was 

present predominantly at the sn-2 position. However. Ota er al . ( 199~1 found that in 

tlounder liver and tlesh lipids there was no preference for the .m-2 position in contrast to 

the general tendency for distribution of long-chain PL'FA of fish oils in this position . 

. -\nalysis of DHA-rich fish oils t bonito head and tuna orbital! was reported by Ando er ul. 

t 19961. The TAG showed a preferential occupation of the sn- l and sn-3 positions by the 

DHA. especially of the s,z-3 position. 

Shimada et a/. 1 2000) synthesized a SL by acidolysis of tripalmitin with 

arachidonic acid 1 AA: 20:4{1)161 using 1.3-specific Rhi:opus ddemar lipase. They reported 

that in SL. .-\.-\ was predominantly present at sn-1.3 positions 1 56.9t7c) of TAG. 

Stereospecific analysis of T .-\G and hydrolysis products provides some useful 

information about the mechanism of gastric digestion . Intestinal absorption of fatty acids 

has been reported to be dependent on their arrangement in the TAG molecules. The 

intluence of fatty acid specificity on intestinal absorption in adults has recently been 

reviewed and positively correlated with the TAG structure in chylomicrons (Small. 1991 ). 

During digestion. fatty acids in the sn-1 and sn-3 positions of the TAG are liberated by a 

positional specific enzyme such as pancreatic lipase. but the fatty acids attached to the sn-2 

position of the TAG are absorbed and distributed in the body in the chylomicron forrn 



t~elson and [nnis. 19991. However. clinical studies need to be carried out to verify this 

latter assumption . The enzymati~ally modified oils prepared in this -.rudy '"·ould be 

potencially usdul as they cnncain desirable functional fatty acids in the same molecule. 

-'·6 Chemical characteristics of oils 

After preparation of enzymatically modified t DHA-enriched. EPA-enriched and 

EPA+DHA-enriched l oils. their chemical properties. mainly peroxide value. conjugated 

dienes. thiobarbitunc acid reactive substances tTBARS ). iodine value. saponification value 

and acid value. were determined using standard methodologies described by the American 

Oil Chemists· Society 1 1990\. Tablc!s ~ .33 and 4.34 summarize the characteristics of 

unmodified BO and EPO and their enzymatically moditied-counterparts. These oils had 

good initial qualities with peroxide values of 1.7-3.2 1meqlkg of oil) for native otis and 0 . .2-

5.2 tmeq/kg of oill tor their enzymatically moditied coumerparts tTables 4.33 and ~.34L 

The higher peroxide value of modified oils may be a consequence of their higher content of 

more readily oxidizable PEFA as compared to their unmodified counterparts. Since the 

peroxide value of these oils was below 10. the maximum acceptable level for edible oils 

t Frankel. 1985). it is assumed that oxidation has not occurred to any appreciable extent. 

Similarly. enzymatically modified oils had higher conjugated dienes and TBARS values 

compared to unmodified oils. Spectrophotometric determination of conJugated dienes 

determines the diene conjugation of unsaturated linkages present. The conjugated diene 

values of unmodified and modified oils were 1.5-9.8 and 3.4-10.1. respectively. while 



Table 4.33 Chcmil:al characteristics of unmodified and enzymatically modified horagc oils (IJO)~ 

Characteristic Unmodified 80 DIIA-enriched 80 EJ•A-cnridtcd UC> EPA+I>HA-cnrichcd BO 

Peroxide value (meq/kg) 1.7 ±0.4 4.0 ± 0.9 0.2 ± 0.9 3.7±0.5 

Conjugated dienes 1.5 ± 0.7 4.7 ± 0.5 3.4 ± 0.4 6.1 ±0.1 

TBARS (J.Unol/g) 2.0±0.1 5.2 ±0.3 4.1 ± 0.5 6.0±0.1 
I J 

+-
·~ 

Iodine value 141.7 ± 0.7 I 9K.4 ± 0. 7 250.H ± 1.1 247.1 ± O.lJ 

Saponification value 269.4 ± 0.9 11~.7±0.5 103.0 ± 0.6 142.3 ± 0.5 

Acid value 0.6 ± 0.1 0.5 ± 0.3 0.7 ± 0.4 0.4 ± 0.2 

11Mean ± SD of triplicate determinations from diflerent experiments 



Table 4.34 Chemical characteristics of unmodified and enzymatically modified evening primrose oib ( EPO)'' 

Characteristic Unmodified EPO OHA-cnrichcd EPO EPA-enriched EPO EPA+DHA-cnril:hcd EPO 

Peroxide value (meqlkg) 3.2 ±0.5 5.2 ±0.5 0.4 ±O.lJ 4.1 ±0.7 

Conjugated dienes 9.8 ±0.2 lJ.'J ± 0.4 10.1±0.1 lJ.7 ± <U 

TBARS (~mot/g) 0.4 ±0.2 3.1 ±0.5 5.8 ±O.tl tl.O ±0.2 
IJ 
~ 
~ 

Iodine value 153.9 ± 0.8 207.7 ± 0.6 25lJ.2 ± 1.0 2J2.tl ± 0.7 

Saponification value 273.5 ± 0.2 142.5 ±0.4 120.7 ± 0.7 II 8.4 ± 0.'> 

Acid value 0.9 ±0.2 I. I ± 0.4 1.0 ± 0.1 O.X ± 0.3 

aMean ± SD of triplicate determinations from different experiments 



2-+5 

corresponding TBARS values v.-ere OA-2.0 and 3.1-6.0 t ~mol malonaldehyde equivalents/ g 

of oil l t Tables -L33 and -+.3-+ ). The iodine values of enzymatically modified oils \vere higher 

than those of their unmodified counterparts. This could be attributed to a higher degree of 

unsaturation in the modified oils. The iodine values of unmodified and modified oils v.;ere 

1-+ 1.7-153.9 and 198A-259.2. respectively !Tables -+.33 and 4.34). The saponification values 

of enzymatically modified oils were lower than those of their modified counterpans. The 

unmodified and moditied oils had saponification values of 269.4-273.5 and 103 .0-l-+2.5. 

respectively tTables -+.33 and -+.3-+l. However. the acid values were ..;imilar for both 

modified tOA-1.1 l and unmodified t0.6-0.9) oils !Tables 4 .33 and 4.34). The quantity of 

FF:\ present in oils is expressed as the acid value which serves as an important quality 

indicator for edible oils. 

4. 7 Oxidative stability of enzymatically modified oils 

The enzymatically modified oils. namely DHA. EPA and EPA+DHA-enriched oils. 

produced under optimum reaction conditions. were assessed for their oxidative stability 

under Schaal oven conditions at 60°C over a 96 h period. The progression of oxidation was 

monitored by employing conjugated diene determination. thiobarbituric acid reactive 

substances tTBARS) test. headspace analysis of volatiles and proton nuclear magnetic 

resonance ( H 1 ~MR) spectroscopy. 



..a.7.l Conjugated dienes 

The formation of conjugated Jienes !COl. as retlected in the absorption readings at 

234 nm. during storage of DHA. EPA and EPA+DHA-enriched oils is ..;hown in Figure 

4.29. Conjugated dienes retlect the content of primary products of oxidation. The 

enzymatically-modified oils had higher conJugated diene values than unmodified oils. All 

samples. both unmoditied and enzymatically modified. followed an increasing trend in their 

CD content throughout the experimentation. but the rates of formation of CD were different 

for each .. -\ -;imilar panem was reported by Sr. Angelo et a/. 1 19751 and Khatoon and 

Krishna 1 \998 l for decomposition products of peanut butter and safflower oil. respectively. 

As lipid peroxidation proceeded. more primary products such as hydroperoxides and 

conjugated dienes were formed. Initially. CD of DHA. EPA and EPA+DHA-enriched 80 

were 7.7. 3A and 7. 1. respectively. The initial CD values of DHA. EPA :md EPA+DHA

enriched EPO were within the range of 9.3-9.9. Cnmodified 80 and EPO had 

corresponding values of 1.9 and 8.5. respectively. The CD of DHA. EPA and EPA+DHA

enriched 80 increased to 15.0. 13A and 21.0. respectively. after 4 days of storage under 

Schaal oven conditions at 60°C. However. corresponding CD values for unmodified 80 did 

not exceed 11 .0. Similarly. the CD of DHA. EPA and EPA+DHA-enriched EPO reached 

22.7. 23.1 and 31.0. respectively. as compared to that of 20.5 for unmodified EPO. The high 

content of CD in enzymatically modified oils may arise from their high proportions of 

readily oxidizable w3 Pl;'FA as compared to those of their unmodified counterparts. Lipid 

radicals formed during the initial oxidation step may undergo rearrangement: thus the 
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Figure -l .29 Conjugated diene values of DHA. EPA and EPA+DHA-enriched borage 
( BO) and evening primrose oils ( EPO) as well as their unmoditied 
counterparts stored under Schaal oven conditions at 60\JC 
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methylene-interrupted feature of PCF.-\ is lost in favour of formation of CD. including those 

of hydroperoxides. CD values may be used to determine the initial rate of lipid oxidation 

and formation of primary oxidation products (Gray. 1978 ). Formation of lipid 

hydroperoxides normally coincides \Vith the CD upon autoxidation (Farmer and Sutton. 

19-U: Jackson. 1981 l. Since hydroperoxides. the primary products of lipid oxidation 

( Labuza. 1971 1. are unstable. measurement of peroxide value provides only information 

about the initial oxidation potential of the oil. The CD assay is faster than PV determination 

and does not depend on chemical reactions such as colour development for its 

determination. lt has been observed that conjugated dienes are formed due to the shift in the 

double bond position upon oxidation of lipids containing dienes or polyenes <Logani and 

Davies. 1980). SL Angelo ~tal. ( 1975) have suggested that conjugated diene values can be 

used as an index of stability for lipid-containing foods. 

\'toussata and Akoh ( 1998) measured the oxidative stability (using oxidation tests 

such as conjugated dienes. peroxide value and oxidative stability index) of melon seed oil 

mteresterified w1th high oleic suntlower oil. and found that oleic acid could enhance the 

-;tability of melon seed oil. This observation is in accordance with previous studies of 

sardine oil. interesterified with oleic acid ( Endo et al.. 1993) and reflects incorporation of a 

less unsaturated fatty acid in the oils examined. 

4.7.2 Thiobarbituric acid reactive substances (TBARS) 

The TEARS test. which measures secondary products of lipid oxidation. is the most 



frequently used indic:.uor for monitoring stability of edible oils. Production of TBARS of 

both enzymatically moditied and unmodified oils are given in Figure ~.30. The TBARS 

values. expressed as !lmol malonaldehyde equivalents per g oil. increased progressively 

over the entire storage period. Furthermore. enzymatically modified oils had ..;igniticantly 

higher 1 p ~ 0 .05 1 TBARS values than those of their unmodified counterparts. The observed 

changes in TBARS 1 Figure ~.301 are similar to the trends observed for changes in 

conjugated Jienes t Figure ~ .29). The general increa..'ie in TBARS values during the storage 

period is due to the fact that as oxidation proceeds. lipid hydroperoxide-; break down to 

produce secondary oxidation products. as supported by the tindings of Park et a/. 1 1996) 

and Strange t't a/. 1 1997). The main compounds in the oils reacting with the 2-thiobarbituric 

actd 1TBA1 reagent are malonaldehyde as well as alkenals and alkadienals. The high content 

of TBARS in enzymatically modi tied oils is due to the incorporation of high proportions of 

PCFA in the oils t!Xamined. Therefore. oils modified with highly unsaturated fatty acids 

\o,·ere more susceptible to oxidation than their unmodified counterparts. 

The TBA method is nonspecific and subject to interference by many substances 

1 Hoyland and Taylor. 1991 ). Bucknall eta/. ( 1978) studied the reaction of hydroxyl radicals 

with D-glucose at C-5 and C-6 that resulted in the formation of malonaldehyde. Also. the 

reaction of TBA with saturated aldehydes. i.e .. butanal. hexanal and heptanal produced 

pigments with absorption maxima at ~55 nm (yellow) and 532 nm (red) 1 Kosugi and 

Kikugawa. 1986). 
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Figure ~ .30 TBARS values of DHA. EPA and EPA+DHA-enriched borage 1 80) and 
evening primrose oils ( EPO) as well as their unmodified counterparts 
-;cored under Schaal oven conditions at 60°C 
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~-7.3 Headspace ~·olatile analysis 

.-\n alternative approach for J.ssessing lipid oxidation in edible oils 1S to measure the 

headspace carbonyl compounds formed upon degradation of fatty acid hydroperoxides. 

Pl'F.-\ in vegetable and fish oils produce a complex array of low- and high-molecular 

v .. ·eight secondary products that provide rich sources of volatile compounds (frankel. 

1993b). The volatile carbonyl compounds have been implicated as heing signiticant 

contributors to off-tlavour development in fats and oils. The concentration of hex.anal and 

propanal. in particular. has been suggested as being primary markers of oxidative 

deterioration of vegetable and tish oils. respectively (Frankel er a/ .. 1994: Shahidi and 

Spurvey. 1996). 

The oxidative stability of enzymatically modified oils. namely DHA. EPA and 

EP.-\+DH.-\-enriched oils. was compared with that of unmodified oils by measuring volatile 

products formed during storage using static headspace gas chromatographic (GC) analysis. 

The individual volatile compounds were tentatively identified by comparing the relative 

retention times of GC peaks with those of commercially available standards. Quantitative 

determination of dominant aldehydes. mainly hex.anal and propanal. was accomplished 

using 2-heptanone as an internal standard. 

The chromatograms of headspace volatiles of oils (both modified and unmodified) 

after 48. 72 and 96 hours of storage under Schaal oven conditions at 60"'C are shown in 

Figures 4.31 - 4.34. Headspace analysis of these oils revealed a striking increase in the 

number and intensity of peaks (figures 4.31 - 4 .34). Similar to other sources of o:1> fatty 
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Figure 4.31 Chromatograms of the heads pace volatiles of unmodified borage otl ( 801 
after 48. 72 and 96 h of storage under Schaal oven conditions at 60°C 
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Figure -l.3:2 Chromatograms of the headspace volatiles of unmodified evening 
primrose oil CEPO) after 48. 7:2 and 96 h of storage under Schaal 
oven conditions at 60°C 
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Figure 4.33 Chromatograms of the headspace volatiles of EPA+DHA-enriched 
borage oil (80) after 48. 72 and 96 h of storage under Schaal 
oven conditions at 60"C 
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Figure 4.34 Chromatograms of the headspace volatiles of EPA+DHA-enriched 
evening primrose oil (EPQ) after 48. 72 and 96 h of storage under 
Schaal oven conditions at 601)C 
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acids. unmodified BO and EPO degrade and produce hexanal a.s their dominant volatile 

1 Figures ~.31 and ~.32 l. This 1s not surprising since 80 and EPO contain substamial 

amounts ot CJi:J fatty acids. mainly LA. Cpon enrichment of these oils with EPA and DHA 

\ ·ia enzyme-catalysed acidolysis. they produced both hexanal and propanal as their main 

volatiles during degradation: propanal being a major breakdown product of w3 fatty acids 

..;uch as EPA and DHA 1 Frankel eta/.. \992: Frankel and Huang. \994 ). The other volatile 

compounds identified 1 by comparing relative retention times with those of authentic 

standardsl in enzymatically modified tEPA. DHA and EPA+DHA-enriched) oils were 

acetaldehyde. butanal. pentanal. heptanal. octanal and nonanal (Figures ~ .33 and 4.34). The 

formation of these volatiles appears to be consistent with autox idation of EPA. DHA and 

LA which are present in appreciable amounts in modified oils. The absence of ::!.4-

decadienal. a major autoxidation product of LA. in the oxidized samples may be attributed 

to its further oxidation to he.'<anal 1 Schieberle and Grosch. 1981: Robards et a/ .. 1988b). 

Konishi er a/. tl995) and ~eff and List ( 1999) reponed that LA-derived volatiles. 

predominantly pentane. pentanal. hexanal and heptenal. were fanned following oxidation of 

soybean oil stored at 60l)C. Grun eta/. ( 1996) were able to identify some volatiles. mainly 

2.4-heptadienal and 2.4-decadienal. during autoxidation of menhaden oil stored at 30l)C. On 

the other hand. ~eff et al. 1 1994) reported a number of compounds (propanal. 2.4-

heptadienal. 2-heptenal. pentanal. pentane. hexanal and nonanal) as major volatiles 

generated during oxidation of canola oil. Shahidi and Spurvey ( \996) identified 

formaldehyde. acetaldehyde. propanal. pentanal and hexanal as the most dominant 
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aldehydes formed during oxidation of fish muscle lipids. Medina era/. 1 1999l noted that in 

fish muscle lipids. the levels of acetaldehyde. propanal. heptane. 2-ethylfuran. pemanal and 

hex anal increased appreciably during oxidation. :\taloba er a/. 1 1996 l reponed that the 

production of volatiles in sunflower oil was related to the extent of oil deterioration. 

The amount of propanal produced in modified oils increased with the storage time 

1 Figure ~ .35 l. l"nder similar conditions. unmodified oils showed no significant formation of 

propanal due to their low contem of w3 Pl"FA as compared to the amoums present in the 

modified otis. Similar increases in propanal levels during storage of fish oils 1 Frankel. 

1993bl and fish muscle lipids 1Shahidi and Spurvey. 1996: :\'tedina ~r al .. 1999) were 

reponed. The initial oxidation products of a-linolenic acid <ALA) are dominated by 9-. 12-. 

13- and 16-hydroperoxides because the diallylic radicals formed favour the attack of oxygen 

on these specitied positions 1Frankel. 198~). The hydroperox1des so fomted degrade to a 

variety of products. including prupanal. ethane and 2A.7·decatrienal 1 Ho er a/ .. 1996). 

Propanal is a predominant oxidation product of ALA and lipids containing a large 

proponion of this fatty acid or those containing long-chain PCFA such a.-. EPA and DHA 

(Shahidi and Spurvey. 1996: He and Shahidi. 1997bl. 

Surprisingly. the content of hexanal produced in enzymatically modified oils was 

significarnly increased I.P ~ 0.05) despite a great reduction in the propon10n of LA in the 

products (figure 4.36). Propanal and other oxidation products generated in modified oils 

may act as pro-ox.idants. Various pro-oxidants can accelerate lipid oxidation and it seemed 

feasible that secondary degradation products of hydroperoxides (volatiles) act as pro-
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Figure ~. 35 Propanal contents of DHA. EPA and EPA+DHA-enriched borage 
<80) and evening primrose oils (EPO) as well as their unmodi fied 
counterparts stored under Schaal oven conditions at 60"C 
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Figure ~.36 Ht!xanal contents of DHA. EPA and EPA+DHA-enriched 
borage (80) and evening primrose oils 1 EPO) a.s well as 
their unmodified counterparts stored under Schaal oven 
conditions at 60"C 
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oxidams.This might explain why a higher concentration of hexanal was observed in 

modified oils. This confirms the findings of EI-Magoli et a/. t 1979) \vho reported that 

presence of lipid degradation products (volatile compounds resulting from PCFA oxidation) 

in the oils catalyzed thc:ir oxidation. Furthermore. Jung er a/. 1 198l) l reported that 

Jeodourization of oils may increase oxidative stability bc:cause prooxtdants such as 

oxidation products. moisture. monoacylglyct!rols and fret! fatty acids remaining in the 

bleached oil are removed during this process. Based on hexanal contents t Figure ~ .36). 

DHA. EPA and EPA+DHA- enriched BO and EPO were more susceptible to oxidation 1p 5 

0.05) than thc:ir unmodified counterparts. This trend is similar to that obtained when 

considering TBARS values . lncrease in hexanal contents during oxidation of high-oleic 

suntlower oil. blended with polyunsaturated vegetable oils. wa~ also reported by Frankel 

and Huang 1 1994). 

During the oxidation process. w3 PCFA. especially EPA and DHA. produce more 

18- and 20- hydroperoxides than other hydroperoxides which may afford propanal upon 

homolytic cleavage. respectively (Figure 2.12). Similarly. (J/J fatty acids. especially LA. 

produce more of the 13-hydroperoxides as their primary product of oxidation and produce 

hexanal upon homolytic cleavage <Figure 2.10) <Frankel. 1982). LA t@) can be expected to 

produce pentane. hexanal. malondialdehyde. octanal and 2A-decadienal upon oxidation 

t Vega and Brewer. 1994 ). Shahidi eta/. ( 1987) found a direct relationship between hex anal 

content and sensory scores of cooked ground pork which contains a high amount of LA 

~ledina er al. ( 1999) reported that headspace volatiles generated from oxidized fish muscle 



lipids correlated highly \Vith TBARS values . Warner er al. ( 1978 l showed that pentanal and 

hexanal serve as good quality indicacors in soybean oil since their content correlates \veil 

\Vith tlavour Sl:ores. Therefore. it is important to consider dominant fatty ac1ds of oils before 

sekcting a specific aldehyde as an indicator for o.'(idative stability determination. 

\tiyashita t:!C al. ( 1994. 1995) mvestigated the oxidative stability of highly 

unsaturated fatty acids ( HCFA l and HL'FA-containing lipids in an aqueous ..;ystem and 

reported that EPA and DHA. which were highly oxidizable in the air. were more stable than 

LA and ALA in water. However. Endo t:r al. 1 1997) showed that HCFA wl!re very unstable 

in both nonaqueous and aqueous systems when they were highly concentrated in a single 

TAG molecule. 

Song and \-tiyazawa l !997l compared the oxidative stability of DHA-enriched oils. 

in the form of phospholipids. rriacylglycerols and ethyl esters. \Vith those of a control oil 

1 palm oil supplemented with 200'c soybean oil: containing no DHAl. Their results indicated 

that DHA-enriched oils in the form of phospholipids were oxidatively more stable than 

those in the form of triacylglycerols and ethyl esters . 

.a.7.4 Changes in double bond index (081) and methylene bridge index (~ffil) 

during oxidation or oils 

The changes in double bond index (08D and methylene bridge index (\tBD of 

DHA. EPA and EPA+DHA-enriched 80 as well as unmodified BO were plotted against 

storage period !Figure 4.37). There was a decline in the OBI and MBI of modified and 
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unmoditied oils Juring oxidation. The extent of decrease produced was greatt!r 1 p ~ 0.051 in 

the moditied oils. \..-hich are more unsaturated. but this decrease was minimum for 

unmoJitied 80. The D8l decreased from 2. 73 to 2.61 in DHA-enriched 80. from 2A6 to 

1.81 in EPA-enriched 80. from 2.82 to 2.66 in EPA+DHA-enriched BO and from 1.63 to 

1.52 in unmoditied BO 1Figure -t37l. Similarly. the ~lBl was also decreased from 1.8~ to 

1.75 in DHA-t!nriched 80. from 1.59 to 1.39 in EPA-t!nriched 80. from 1.92 to 1.77 in 

EPA+DHA-enriched 80 and from 0.80 to 0.73 in unmoditied 80 1Figure .t.37). Similar 

results ""We obtained for enzymatically moditied EPO and unmodified EPO. The D8l 

decreased from 2.53 to 2A7 in DHA-enriched EPO. from 2..t9 to 2.32 m EPA-enriched 

EPO. from 2.8~ to 2.64 in EPA+DHA-enriched EPO and from 1.81 to 1.76 in unmodified 

EPO 1 Figure .t.38J. The ~lBl decreased from 1.63 to 1.57 in DHA-enriched EPO. from 1.58 

to l..t3 in EPA-enriched EPO. from 1.9:! to 1.7-t in EPA+DHA-enriched EPO md from 

0.91 to 0.89 m unmoditied EPO 1 Figure ~.38). As expected from their higher degrees of 

unsaturation. the DBl and MBl values were significantly higher ( p $: 0.05) in the 

enzymatically modified oils as compared with those of their unmoditied counterparts. The 

OBI represents the number of double bonds while MBI represents the number of bis-allylic 

methylene bridge positions in PCFA 1Vartak ~~ al .. 1997). Wagner et a/. ( 1994) 

demonstrated that the number of bis-a!lylic positions from which hydrogen can be 

abstracted by free radical processes is the major detenninant for oxidizability of cellular 

lipids. In studies using homogeneous solutions of purified lipids. a linear correlation existed 

between the number of bis-ailylic positions and the oxidizability of the lipids (Cosgrove et 
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Figure 4 .37 Changes in double bond index <081) and methylene bridge 
index (~8[) of DHA. EPA and EPA+DHA-enriched borage 
oils (BOland unmodified BO during storage at 60°C 
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Figure -l.38 Changes in double bond index I OBI) and methylene bridge 
index (~Bn of DHA. EPA and EPA+DHA-enriched 
evening primrose oils (EPOl and unmodified EPO during 
-;torage at 60°C 
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a/.. 1987: \Vagner t.:t al .. 199~1. 

To test ho\v DBI and \-181 can be used to evaluate oxidative stability of oils. 

regression analyses were (arried om between each index and conjugated dienes. TSARS. 

hexanal and propanal contents of oils. Since OBI and \--181 decrease while other parameters 

increase during oxidation. negative correlations 1 p $ 0.05) existed between these variables. 

Significant negative .:orrelations 1p $ 0.05) between data for OBI and :\-181 and conjugated 

diene values of modified oils were present: correlation coefficients were 0 .802-0.922 for 

OBI and 0.792-0.939 for \-1BL However. (Orresponding values for unmodified oils were 

0. 7~1-0.752 and 0.7~2-0.910 1p $ 0.051. respectively !Table ~.35: Figures :\.2 and .-\.3). 

Good negative correlations were obtained between OBI or MBI and TBARS values of oils: 

correlation coefticients were 0.621-0.975 for OBI and 0.677-0.971 !p $ 0 . 11 for :\-181 for 

modified oils and the corresponding values for their unmodified counterpans were 0.754-

0.811 and 0.760-0.973 1 p $ 0.05 1. respectively !Table ~.35: Figures AA and .-\.5 l. In 

addition. negative correlations existed between OBI and ~tBI with hex.anal content of oils: 

the correlation coefficients (r) were 0.728-0.932 for 08[ and 0.793-0.971 1 p $ 0.05) for 

\-181 for moditied oils and 0.576-0.718 for DBI and 0.574-0.877 ( p $ 0 .1) for MBI for their 

unmodified counterparts !Table ~.36: Figures A.6 and A.7). Propanal contents were also 

negatively correlated with those for OBI and MBI of modified oils with respective r = 

0.703-0.912 and 0.751-0.942 (p $ 0.05) (Table ~.36 : Figures A.8 and A.9). Therefore. these 

results suggest that indicators such as DB[ and MBI. representing structural characteristics 

of lipid molecules involved. have a great influence on oxidative stability of both modified 



Tahlc 4.35 Correlation cocffil:icnb (r) hctwccnconjugatcd Jicnc~ ({'I>J anJ douhlc hond index II>BIJ and methylene bridge 
index (MBI) as well as between thioharhituric acid reactive ~uh~t•mccs (TBARS 1 and l>BI and MBI of oxidi1.cd 
oils 

Sample CD Vs DBI CD Vs MBI TBARS Vs DBI TBARS V.,. MBI 

Unmodified BO -0.741" -0 .9 10~ -O.X 11 1 -O.tH Y 

DHA-cnriched BO -OJQ I" -O . X-l .~h -0.771" -O.Nlh 

EPA-enriched BO -O.XY4 11 -O.lJ23'' -0 .95(1' -0 .962 .• 

EPA+DHA-enrid1cd BO -O.Y22" -O.lJJt)" -o .lJo.r· -0. lJ .~2'' 

Unmodified EPO -0.752" -0.7-li' -0.75-lh -0. 7hO" 

DHA-enrichcd EPO -O.H21" -O.Mhoh -O.h21' -0.6 77' 

EPA-enriched EPO -o.xo2'' -0.7tJ'2h -O.IJ75'' -0.971 '' 

EPA+DIIA-cnriched EPO -O.X72" -0. 71J6h -O.'Jih'' -(U\hO" 

"Significant at p < 0.005 level; hSignificanl at p < 0.05 kvel ; ' Significant at p < 0.1 level ; HO. horagc oil; EPO, evening 
primrose oil 

I~ 
0'-o-



Table 4.36 Correlation l:ocffkiellls (r) hctwccn hcxanalwnh:nl and douhlc hond iudcx ( I>BI) and methylene hridgl: index 
(MBI) <IS well as between prop;mal wulcnl and DBI aud MBI of oxidizl.'d oils 

Sample He)(anall:unlciH \'.\' 1>111 tlcxan<~l content \1s MBI Propanal cunll:llt V.,. DBI Propanal content \Is M B I 

Unmodified 80 -0.71K -O.X77 

DUA-cnrkhed BO -O.K42" -O.X6511 -tun 111 

EPA-enriched BO -0.932.1 -0.971.1 -0.912'' 

EPA+DI-IA-cnrichcd BO -O.K65" -O.KI.J6" -O.X31.J11 

Unmodified EPO -0.576' -0.574' 

DHA-enrichcd EPO -0.72Kh -0.71.J3h -0. 703h 

EPA-enriched EPO -0.904.1 -O.K95h -0.90Ka 

EPA+DHA-enriched EPO -0.91Ja -(U~77" -O.X53 11 

11Significanl at p < 0.005 level; "Significant at p < 0.05 lcvd; ··significant at p < 0.1 level; 80, homgc oil; EPO, evening 
primrose oil 

-O.X5J" 

-0.9-E' 

-O.X6X11 .... 
"' ...... 

-0.751 .. 

-0.902a 

-O.K76h 
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and unmodified oils. 

-l.1.5 Proton :\\IR study of enzymatically modified and unmodified oils 

The use of ~~IR spectroscopy for evaluation of oxidative ..;tability of oils \Vas also 

~onsidered. 1 
H ~~IR makes it possible to determine hydrogen atoms of various types in 

T.-\G molecules of lipids. This is because in a strong magnetic field. hydrogen atoms absorb 

energy from radio frequency depending on their molecular environment. During oxidation 

of food lipids. changes occur in the protons ( 
1
H) m oxidizing molecules that may be 

monitored by employing 1H ~MR spectroscopy. 

The 
1
H ~~1R spectrum of BO is shown in Figure .t.39. The spectrum signals are 

annotated from a to h. These groups are assigned as follows: a. olefinic protons and one 

methine proton in the glyceryl group (0 5.1-5 .5 ppm): b. four methylene protons in the 

glyceryl group 18 -t.O-+A ppm>: c. diallylmethylene protons !=CH-CH~-HC=: 8 2.6-2.9 

ppm>: d. six a-methylene protons adjacent to carbonyl carbon !a-CH::: 8 1.2-2..+ ppm>: e. 

protons in the CHz groups attached to saturated carbons and double-bonded carbon atoms 

!CHz-C =: 8 1.7-2.2 ppm>; f. protons in the CH"- groups attached to the saturated carbon 

atoms l CH:-CHz-C =: 8 1.5-1 . 7 ppm); g. protons in the CHz groups bonded to two saturated 

carbon atoms ( [CH::dn: 8 1.0-1.5 ppm>: h. the nine terminal methyl proton~ (0 0.6-1.0 ppm) 

( Wanasundara and Shahidi. 1993; Miyake et ai.. l998a.b). The sharp signal at the high 

applied field is due to the internal standard. tetramethylsilane (TMS: 8 0 .0 ppm>. The 

relative number of protons in each group was calculated based on the integration of 
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Figure 4 .39 1H NMR spectrum of borage oil <peaks at 0 ppm and 7.26 ppm 
for TMS and residual CHC1 3 protons. respectively) 
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methylene protons t8 4.0---lA ppm t of the glyceryl moiety of the TAG. 

Relati\·e changes in the total number of aliphatic tCH~ + [CH::]n + CH!-CH::-C = + 

CH~-C = + a-CH:: 8 0.6-2.5 ppm t. olefinic l -HC = CH-: 8 5.2-5.5 ppm) and 

diallylmethylene l =CH-CH~-HC=: 8 2.6-2.9 ppm l protons of enzymatically modi tied oils 

and unmoditied oils during oxidation are shown in Figures 4AO and 4A 1. It was found that 

during a 96 h storage. the relative number of oletinic and diallylmethylene protons 

decreased and the total number of aliphatic protons increased t Figures -'-.40 and 4.41 ). This 

is in ;1greemem with the results reported by Wanasundara and Shahidi 1 1993) for canota and 

soybean oils. In DH.-\-enriched BO and EPO. the number of olefinic protons decreased 

from 20.8 to 13.9 and from 15.8 to 10.2. respectively. The number of oletinic protons of 

EPA-enriched BO and EPO decreased from 17.7 to 13.4 and from 15.7 to 10.5. 

respectivc!ly. In EPA+DHA-enriched BO and EPO. the number of olefinic protons 

decreased from 18.3 to 7.7 and from 20.3 to 11.7. respectively. Similarly. the number of 

nlefinic protons of unmodified BO and EPO decreased from 12.2 to 8.9 and from 12.6 to 

9. 1 respectively l Figures 4AO and -'-A I). 

During oxidation of DHA-enriched 80 and EPO. the number of dially!methylene 

protons decreased from 13.-'- to 9.2 and from 14.-'- to 7.3. respectively. The number of 

diaJ1ylmethylene protons of EPA-enriched 80 and EPO decreased from 11.3 to 8.6 and 

from 11.3 to 8.1. respectively. In EPA+DHA-enriched BO and EPO. the number of 

diaJlylmethyelene protons decreased from 12.2 to 7.1 and from 14.3 to 7.2, respectively. 

Similarly. the number of diallylmethylene protons of unmodified BO and EPO decreased 



Figure 4.40 Total olefinic. diallylmethylene and aliphatic protons of DHA. 
EPA and EPA+DHA-enriched borage oils (80) and unmodified 
BO during accelerated oxidation at 60°C 



• Unmodified BO • Unmodified 80 

• DHA-enriched 80 • DHA-enriched 80 

• EPA-enriched 80 • EPA-enriched 80 

• EPA+DHA-enriched 80 • EPA+DHA-enriched 80 

0 30 60 90 120 0 30 60 90 120 

Storage time (h) 

110 

(I) 

5 100 ... e 
Q. 

u 
;; 90 
as 

s:::. 
Q. ·-as 
as 80 ... 
0 
t-

70 

• Unmodified 80 

• DHA-enriched 80 

• EPA-enriched 80 
• EPA+DHA-enriched 80 

0 30 60 90 120 



272 

Figure -t-.4 I Total olefinic. diallylmethylene and aliphatic protons of DHA. 
EPA and EPA+DHA-enriched evening primrose oi ls <EPO) and 
unmodified EPO during accelerated oxidalion at 60°C 



• Unmodified EPO • Unmodified EPO • Unmodified EPO 

• DHA-enriched EPO • DHA-enriched EPO • DHA-enriched EPO 

• EPA-enriched EPO • EPA-enriched EPO • EPA-enriched EPO 

• EPA+DHA-enriched EPO • EPA+DHA-enriched EPO • EPA+DHA-enriched EPO 

21 15 

100 

U) en 
18 c c: 

0 12 0 - -U) 0 0 
c ~ 

~ 90 
s Q. Q. 

Q) u 
2 ·-c -Q. 15 

Cl) as 
~ s=. 

u 9 Q. ·- s=. ·-c - - 80 - Cl) as ... 
Cl) E as -0 - -~ 0 

12 - ~ as ·-0 6 70 

9 

0 30 60 90 120 0 30 60 90 120 0 30 60 90 120 

Storage time (h) 



from 5.-+ to -U and from 6.2 to -U respectively (Figures 4.40 and 4.-+1 ). Considering 

oletinic and diallylmethylene proton~ of modified and unmodified oils. modified oils had a 

relati\·dy higher number of both types of protons than their unmodified counterparts. This 

might be due to a higher degree of unsaturation in modified oils as compared to unmodified 

oils. \leanwhile. there was a corresponding increase in total number of aliphatic protons in 

all oils e:<.amineJ. Fnr e:<.ample. in DHA-enriched oi ls the total number of aliphatic protons 

increased from 63-66 to 97-100 as a result of oxidation. The total number of aliphatic 

protons of EPA-enriched oils increased from 64-67 to 99-112. [n EPA+DHA-enriched oils. 

the corresponding increase \vas from 63 to 98-109 and that in unmodified BO and EPO was 

from 72-86 to 93-95 1 Figures 4.-+0 and 4.-+ I). 

During autoxidation. diallylmethylene protons are attacked by free radicals followed 

by intramolecular rearrangl!mem of the oletinic protons. This is a consequence of the fact 

that the behaviour of the olefinic proton group is closely related to the diallylmethylene 

proton group because of the interchangeability of allyl radicals (Saito and Udagawa. 1992). 

Consequently. during oxidation the relative number of diallylmethylene and olefinic protons 

decreases. Khatoon and Krishna 1 1998) assessed the O)(idation of heated safflower oil by 1H 

~MR technique and reported the disappearance of aJlylic and olefinic protons during 

ex.tensi ve oxidation. 

The ratio of aliphatic to olefinic protons (R.w) and that of aliphatic to 

diallylmethylene protons lRui) were determined. [t was found that Rao and Rw increased 

gradually and significantly (p ~ 0.05) during the storage of enzymatically modified oils and 



Figure ~A:! Changes in aliphatic proton to olefinic proton ratio (R30 ) and aliphatic 
to diallylmethylene proton ratio (Rad) of DHA. EPA and EPA+DHA
t!nriched borage oils ( 80) and unmodified 80 stored at 60 ... C 
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Figure 4.-B Changes in aliphatic proton to olefinic proton ratio 1 RaoJ and aliphatic 
to diallylmethylene proton ratio (Rild) of DHA. EPA and EPA+DHA
enriched evening primrose oils (EPO) and unmodified EPO stored at 
60°C 
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th~ir unmodified counterparts 1 Figures ~.42 and ~.43 1. Similar findings have been reported 

by oth~rs !Wanasundara and Shahidi. 1993: Shahidi ec al .. 199~: Shahidi and Spurvey. 

19961. R~. ~ and RJJ values of modified BO increased from 3.2-3.8 to 7.0-14.0 and from 4.9-

6.0 to 10.6-15.2. respectively. Corresponding increases in the R.~o and R1J \·alues of 

modified EPO were from 3.1-U to 8.-l-9.8 and from ~.-l-5 .6 to 12.3-13.7. Similarly. in 

unmodified BO and EPO. Rao and RaJ increased. respectively. from 5.8-6.8 to 10.3-10.7 and 

from 11 .6-16.0 to 22.7 -23.2. However. modi tied oils initially showed a IO\'.:er Rm and R~J 

\·alues than those of their unmodified counterparts. This is a consequence of the higher 

number of t0tal oletinic and diallylmethylene protons in modified oils than those in 

unmodified oils. 

The numerical values of R.~o and Rad were plotted against the corresponding 

conjugated diene •:alues of enzymatically modified BO and EPO as well as unmodified oils 

1 Figures A. I 0 and A. II 1. A highly significant correlation <p :5 0.005) existed between both 

R.1o and Rad and conjugated dienes: correlation coefficients (r) were 0 .930-0.988 for Rm and 

0.947-0.992 for~ for modified oils and 0.980-0.982 for Rw and 0.985-0.987 for R.~d for 

their unmoditied counterparts (Table 4.37). 

Strong correlation coefficients were evident for relationships betwc.:en both Rao and 

Rad and TBARS values of modified and unmodified oils (figures A.I2 and :\. 13 ). The 

correlation coefficients lrl were 0.885-0.976 (p :5 0.05) for Rao and 0 .926-0.980 (p :5 0.005) 

for ~d for modified oils and 0.881-0.978 for Rao and 0.779-0.983 (p :5 0.051 for ~d for their 

unmodified counterparts <Table 4.37). 



Table 4.37 Condation coefficients (r) hetween conjugated dienc:-; (CD) and the mtios of aliphatic to olefinic (R,,.,) and 
aliplu.tlic to diallylmcthylene protons (I{, .. ,) <ts wdl as between chiobarhituric acid reactive substances (!'liARS ) 
and Rau and Rut of ox idited nils 

Sample CD Vs Ra., (1) V.\· R.ut TBARS Vs R .. ., TBARS V.\· R,,.1 

Unmodified BO 0.9X2a 0.9X7a O.Y7X;' O.YttV' 

DHA-enriched 80 O.Y71 .. O.lJXY O.XX5" 0 .9.26'' 

EPA-enriched 80 O.Y77 .. 0 .947" o.•Ho·' O.'J).f' 

EPA+DHA-enriched 80 o.9o4" O.lJX5 .. O.lJoY O.'JXO'' 

Unmodified EPO 0. 9Xtr' 0.9X5" O.XX 1" 0 .77911 

DHA-enriched EPO 0.9MX11 0.992" 0.9 15 .. 0.9J7'' 

EPA-enriched EPO 0.93(t 0.974" 0.970.1 0.960'' 

EPA+DHA-cnrichcd EPO 0.960" 0.95Y 0.967" 0.972" 

11Significanl ut p < 0.005 level; hSignificant at p < 0.05 level ; BO, borage oil; EPO, evening primrose oil 

I.J _, 
--1 



As lkpicted in Figures .-\.14 and .-\.15. both Rao and Rad values of moditi ed as well 

;1_-; unmoditied oils ..;trongly correlated with hexanal contents of the oils . The correlation 

..:oeffi..:tt:nrs <rl \\~re 0.954-0.991 for R.~., and 0.961-0.996 for R~J for modified oils and 

0.960-0.965 for R~,> and 0.948 ( p ~ 0 .0051 for R..~J for their unmodified counterparts 1 Table 

4.38). 

Figures .-\.16 and .-\.17 depict the relationships betv.·een both R..~o and RaJ \'alues and 

propanal contents of enzymatically modified oils. A highly signiticant correlation 1 p $ 

0.0051 e;'(isted between both ~o and Rui and propanal content of oils: correlation 

coefticients 1 n were 0.961-0.986 for Rao and 0.959-0.978 for RuJ for enzymatically modified 

80 and 0.950-0.9S I for Ra" and 0.952-0.990 for R..~J for enzymatically modified EPO 

1 Tab!~ -+.38). These results suggest that parameters such as R"o and Rao may be used as 

indicators of O;'(idative stability of oils. 

The :"1~1R methodology. as demonstrated above. offers a rapid. non-destructive 

procedure for evaluation of the O;'(idative deterioration of enzymatically modified oils as 

well as their unmodified counterparts. It also provides an alternative method to estimate the 

overall changes in the primary and secondary oxidation products of lipids. 

Wang and Tao c 1998) monitored hypochlorite-assisted oxidation of soy fatty acids 

using ~MR spectroscopy. They reported that the ratio of the double bond protons to methyl 

protons may be used to monitor the oxidation of fatty acids. The use of 
1 
H :"'MR has proven 

to be useful for monitoring fatty acid double-bond cleavage. Silv.·ood and Grootveld ( 1999) 

compared 1H NMR spectra of oxidized PUFA-rich culinary oil with that of a corresponding 



Tahlc 4.1X Correlation l:octlicients (r) hctwccn hcx<tnal contclll and r<~tio~ of aliphatic In olefinic CR ... ,) <IIlli aliphatic to 
diallylmcthykne protons (1{, .. 1) as well as herwc:en propanal content and R. ... and 1{,,.1 of oxidit.cd oib 

Smnplc llexanal colllcnt \'.\· R .... llcxanal nmtc111 \'.~ R.ul Prop<malcontcnl v.,-R ... , Pmpanaln llllcnt Vs R. .. 1 

Unmodified BO 0 .965a 0.94X'' 

DHA-cnrichcd HO 0 .9X7" 0 .91)6'' 0 .963" 0 .1J7X" 

EPA-enriched 80 0 .97Ha 0 .969'' O.tJX6'' 0 .')5')'' 

EPA+DilA-cnrichcd BO 0.962" 0.976~ 0.')61 '' 0.'J71'' I ~ 
--I 
-C 

Unmodified Et>O 0.960'' 0 .94H'' 

Dl-tA-cnriched Et>O 0 .965'' 0 .961" o .95x·• 0 .97)'' 

EPA-enriched EPO 0 .991" 0 .994" 0.9X I '' 0. l)l)()'' 

Ef>A+DIIA-cnriched EPO 0.954~ 0 .96Y 0.'J50'' 0.')52" 

.. Significant at p < 0.005 level ; 80, horage oil; EPO, evening primrose oil 



~ontrol t unoxidized oil l and reported that the ratios of the intensities of bis-allylic protons 

and the total okfinic protons to that of the acyl chain terminal CH~ protons were markedly 

lower in the oxidized oil. 

Pl.F.-\ are among the most easily oxidizable component of foods and cell membrane 

lipids: many of the oxidized products of lipids. including hydroperoxides. free radicals and 

aldehydes are toxic and mutagenic 1 Pearson er af .. 1983: Hageman et af .• 1990) . .-\ high 

percentage of humans are frequemly and continually exposed to lipid oxidation products 10 

the diet t arising. for example. from deep-frying of PCFA-rich oils). and the possibility that 

regular consumption of oxidized lipids may be deleterious to human health has recently 

attracted much interest 1 Chow. 1992 ). The short-term feeding of heated and/or oxidized oils 

and fats to e:~perimental animals gave rise to loss of appetite. diarrhoea. haemolytic 

Jnaemia. growth retardation and apparent accumulation of peroxides in adipose tissues 

t Sanders. 1983 ). \-loreover. cellular damage in various organs. elevated liver and kidney 

weights. and a modified fatty acid composition of tissue lipids in rats were shown to result 

from the short-term feeding of oils and fats subjected to the heat and oxidation associated 

with normal usage 1 Yoshida and Kujimoto. 1989). 

The ease of autoxidation of unsaturated fatty acids is proportional to the number of 

aJiylic methylene groups: thus modified oils with a high content of PUFA are more prone to 

oxidation than unmodified oils. Due to the presence of high proportions of PUFA in 

modified oils. protection of these fatty acids is necessary in order to counterbalance any 

harmful effects which may arise as a result of their oxidation and to take full advantage of 



281 

their nutritional and health related benefits associated with their cu3 and u/J components. 



SC\1:\IARY A~D CONCLLSIO~S 

Enzyme-assisted •u.:idolysis of -{-linolenic acid 1GLAl-rich oils. nam..:ly borage 1 BOl 

J.nd ~\·ening pnmrose oils tEPOl. with docosahexaenoic ac1d tDH.-\l ur t:Jcosapentaenoic 

acid tEPA l and their combmation were studied. Six commercially available lipases \\;ere 

screened for their ability to incorporate the above fatty acids into GLA-rich oils. Among 

the enzymes tested. the highest mcorporation of DHA into 80 and EPO was obtained 

\vhen lipase ~ovozvm--B5 from Candida antarc:tic:a used for the acidolysis reaction . 

Howe\·er. the lipase PS-30 from Pseudomonas sp. was round to be most effective in 

incorporating EPA or EPA+DHA into both oils. These differences might be of interest 

when enrichment/incorporation with a particular PL'FA or PL'FA mixture is required. 

The effects of various reaction parameters such as amount of lipase. reaction 

temperature. reaction time. mole rauo l)f substrates and type of organic solvents on DHA 

and/or EPA mcorporation were studied. In generul. as the amount of enzyme. 

temperature. reaction time and mole ratio increased. incorporation of DHA and/or EPA 

into BO and EPO was also increased. Among the organic solvents tested. n-hexane served 

best for incorporation of DHA and/or EPA into the oils examined. However. solvent-free 

reactions also produced a satisfactory incorporation of the above fatty acids into the oils 

tested. 

Incorporation of DHA. EPA and EPA+DHA into BO and EPO was optimized. under 

laboratory conditions. for process parameters such as the amount of enzyme. reaction 



temperature and reaction time! using response -;urface mt!thodolog~ t RS:\l 1. In DHA

t!nnchc!d oils. maximum incorporation of DH.-\ t33.5-35 .6CC 1 \vas obtaint!d using Cmdida 

,mrarcric,z enLymt! at a 162-165 units. a reaction tempt!rature of -+3-50"C and reaction 

time of 25-27 h. On the other hand. in EPA-enriched oils. the! maximum incorporation of 

EPA was obtained when Pseudomonas sp. enzyme v.:a-' used at enzyme units. reaction 

temperature and reaction time of 299-309 L· . .+0-+f'C and 25-27 h. respectivdy. 

Similarly. optimization of reaction parameters gave maxima of 35.5 and 33.6q. 

EP.-\+DHA into BO and EPO. respectively. Conditions for optimum EPA+DHA 

mcorporation were dost!ly related for both oils and were achieved at 278-299 units of 

Pseudommzas sp. enzyme at -+2-43°C and 2-+-26 h. Thc!refore. optimizal!on for 

incorporation of DHA and/or EPA into BO and EPO dcz acidolysis by lipases from 

Candida antarctica or Pseudomonas sp. was found possible . 

The positional distribution of fatty acids in the TAG molecules of DHA. EPA and 

EPA+DHA-enriched oils was determined: DHA was randomly distributed over the three 

positions of TAG of DHA-enriched BO while in DHA-enriched EPO th1s fatty acid was 

mainly located at the sn-2 position. In EPA-enriched BO. EPA was randomly distributed 

in the TAG molet.:ules. However. in EPA-enriched EPO am~ in EPA+DHA-enriched BO 

and EPO. EPA and DHA favoured the sn-l and sn-3 positions of TAG. (n all oi ls 

examined. GLA was concentrated in the sn-2 and/or sn-3 positions of TAG. Therefore. 

enzymatically modified oils are expected to be superior to simple physical mixtures of the 



viis in terms vf their absvrption and assimilation in the body . Ho\vever. clinical ::;tudies 

-;hould be carried out to \·erify this as.mmption. 

It is anticipated that production ofT AG rich m GLA and DHA and/or EP.-\ would 

provide the maximum health benefit. Long-chain PCFA. with a balance between w3 ami 

w6 components. are required by the body as their deficiency has been associated \Vith a 

number of clinical disorders . Thus. structured lipids obtained enzymatically from BO or 

EPO may be useful in certain nutritional applications . 

The oxidative -;tability of enzymatically modified oils and their unmodified 

counterparts "vere assessed. Among the oils examined. enzymatically modified oils had 

-;ignificantly t p ~ 0.051 higher conjugated dienes (CD). 2-thiobarbituric acid reactive 

substances <TBARS 1. hexanal and propanal contents than those of their unmodified 

counterparts. Therefore. enzymatically modified oils were more susceptible to oxtdation 

than their unmodified counterpans. 

The double bond index iOB[) and methylene bridge index lMBD of oils were 

decreased during oxidation. The extent of decrease was significantly (P ~ 0.05) higher in 

the modified oils. which are more unsaturated. An attempt was made to correlate various 

parameters of oxidation (CO. TBARS. hexanal and propanal contents) with OBI and ~lB[ 

of oils: correlation coefficients (-rl were within the range of 0.574- 0.975. This suggests 

that indicators such as DBI and MBI have an influence on oxidative stability of oils. 
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The ratio of aliphatic to olefinic protons lRao) and that o f ;.tliphatic to 

diallylmethylene protons lRJ.tl in all oils. determined as ~MR spectroscop~ . tncn;;.~s~J 

steadily ovl!r the entire length of storage period. indicating progressi\e uxidation ~)f 

unsaturated fatty acids in both modified oils and unmodified oils. :\ htghly ''gntfi(;.mt 

~orrelation existed between these ratios and other parameters of o.x1dation 1 CD. TB.-\RS. 

hexanal and propanal contents) for aimost all oils. thus suggesting that \:\tR 

methodology can be usc!d as an effective means to simultaneously estimat~ both pnma~ 

and secondary oxidation changes in both modified and unmodified oils . 

The results presented in this study have provided simple and reliable analytical 

methods to follow the oxidation of modified and unmodified BO and EPO. and ~nhanced 

our understanding of the parameters involved in the oxidation uf nutritiunal and 

medicinal oils. Bast:d on the results obtained in this study. it is recomml!nded that the 

applicability of OBI and ~tBI as well as 1H ~MR as indicators of ox.1dat1on uf liptJs tn 

uther food systems be evaluated. Furthermore. the relationships of these tndicators \'- ith 

sensory properties need to be evaluated and confirmed. 

The ease of autoxidation of fatty acids is proportional to the number of methvlene 

groups between double bonds. thus modified 80 and EPO with a higher content of EPA 

and DHA were more prone to oxidation than their unmodified counterparts. Thus. 

modified oils rich in PUFA compared to unmodified oils must be protected against 

oxidation in order to counterbalance any hannful effects from production of oxidation 



products and to take advantage of their nutritional ~md health benefits. It ts recommcnJcd 

that the addition of appropriate antioxidants 1 natural or -.ymhetic 1 to the moJi fieJ 80 anJ 

EPO up to the le\·el r.hat would prevent oxiJation of PCF:\ before tncorporaunn tnto 

food. used as nutraceuticals or for other applications be examined. The po..;sibtlit~ l ) f 

using microencapsulation for oils should also be investigated as this ..:auld improve the 

oxidative stability of oils and preserve the integrity of nutritionally important PCF.-\. 

Incorporation of w3 PL:FA-enriched 80 and EPO into foods may reduce the n-.k ,.)f 

developing certain disease conditions in humans. but such uses need to be justtfieJ using 

evidence gathered from animal studies and clinical trials . Further research on w3 PL'F.-\

enriched 80 and EPO should therefore focus on the metabolism and clinical benefits as 

well as safety issues and unravelling of their nutritional and medicinal importance anJ 

economic feasibility of large-scale production . 
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Figure A.l 

3~6 

Standard line of concentration dependence of TBARS as reflected in the 
absorbance of the TBA-malonaJdehyde comple'l at 532 nm 

Correlation coefficient (r) = 0.996 
Equation of the line was Y = aX + b where. 
Y =absorbance at 532 nm (A532 nm) 

X= concentration of malonaldehyde (MA) in 5 mL solution.!J.mol I C) 
a= 15.0158 
b=O 
Therefore. C = 0 .067 As32 nm 

Since the W grams of oil dissolved in 25 mL solution. the MA 
concenuation is: 
C (~ol of MAl g oil) = (0.335Asn nrn )/W 
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Figure A.2 
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Relationships between conjugated dienes and double bond index. 
(08D and methylene bridge index. (MBD of oxidized DHA. 
EPA and EPA+DHA-enriched borage oils (BO) and unmodified BO 
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Figure A.J 

3::!8 

Relationships between conjugated dienes and double bond 
index ( DBO and methylene bridge index (MBO of oxidized 
DHA. EPA and EPA+DHA-enriched evening primrose oils 
( EPO) and unmodified EPO 



• Unmodified EPO (r =- 0.752) • Unmodified EPO (r =- 0.742) 

• DHA4nriched EPO (r = • 0.821) • DHA-enriched EPO (r = -0.866) 

• EPA4nriched EPO (r = • 0.802) • EPA-enriched EPO (r =- 0.792) 

• EPA+DHA4nriched EPO (r = · 0.872) • EPA+DHA-enriched EPO (r = - 0. 796) 
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Figure .-\.4 

3:!9 

Relationships between TBARS values and double bond index 
(DBD and methylene bridge index tMBD of oxidized DHA. 
EPA and EPA+DHA-enriched borage oils (80) and unmodified 80 
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Figure A.5 
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Relationships between TBARS values and double bond index 
1 08[) and methylene bridge index (MB[) of oxidized DHA. 
EPA and EPA+DHA-enriched evening primrose oils 
<EPO) and unmodified EPO 
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Figure A.6 
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Relationships between hexanaJ contents and double bond index 
<DBD and methylene bridge index <MBD of oxidized DHA. 
EPA and EPA+DHA-enriched borage oils <80) and unmodified 80 



• Unmodified 80 (r =- 0.718, • Unmodified 80 (r =- 0.877) 

• DHA-enriched 80 (r = - 0.842) • DHA-enriched 80 (r =- 0.865) 

• EPA-enriched 80 (r = -0.932) • EPA-enriched 80 (r = - 0.971) 

• EPA+DHA-enriched 80 (r = -0.865) • EPA+DHA-enriched 80 (r = - 0.896) 
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Figure A.7 
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Relationships between hexanaJ contents and double bond 
index 1 DBO and methylene bridge index (MBD of oxidized 
DHA. EPA and EPA+DHA-enriched evening primrose oils 
tEPQ) and unmodified EPO 



• Unmodified EPO Cr = -0.576) • Unmodified EPO (r = -0.57 4) 

• DHA-enriched EPO Cr = -0. 728) • DHA-enriched EPO (r =- 0.793) 

• EPA-enriched EPO (r = - 0.904) • EPA-enriched EPO (r = -0.895) 

• EPA+DHA-enriched EPO (r = • 0.911) • EPA+DHA-enriched EPO (r = - 0.877) 
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Figure A.8 
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Relationships between propanal contents and double bond index 
<DBD and methylene bridge index <MB[) of oxidized DHA. EPA 
and EPA+DHA-enriched borage oils (80) 
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Figure A.9 
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Relationships between propanal contents and double bond index 
1 DB I) and methylene bridge index (MBI) of oxidized DHA. 
EPA and EPA+DHA-enriched evening primrose oils (EPO) 



• DHA-enriched EPO (r =- 0.703) • DHA-enriched EPO (r =- 0.751) 

• EPA-enriched EPO (r = -0.908) • EPA~nriched EPO (r = - 0.902) 

• EPA+D~ tA-enriched EPO (r = -0.853) • EPA+DHA-enriched EPO (r = - 0.876) 
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Figure A.lO Relationships between conjugated dienes and the ratio of aliphatic 
to olefinic protons <R30) and ratio of aliphatic to diallylmethylene 
protons (Rad) of o'lidized DHA. EPA and EPA+DHA-enriched 
borage oils ( 80) and unmodified BO 



• Unmodified BO (r = 0.982) • Unmodified BO (r = 0.987) 

• DHA•nrichec:t 80 (r = 0.971) • DHA-enriched BO (r = 0.983) 

• EPA..nriched 80 (r ;;: 0.977) • EPA-enriched BO (r = 0.947) 

• EPA+DHA•nriched 80 (r = 0.964) • EPA+DHA-enriched 80 (r = 0.985) 
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Figure A. I I Relationships between conjugated dienes and the ratio of aliphatic 
to olefinic protons tR30) and ratio of aliphatic to diallylmethylene 
protons ( Rad) of oxidized DHA. EPA and EPA+DHA-enriched 
evening primrose oils tEPO) and unmodified EPO 



• Unmodified EPO (r = 0.980) 

• DHA-enriched EPO (r = 0.988) 

A EPA-enriched EPO (r = 0.930) 

• EPA+DHA-enriched EPO (r = 0.960) 
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Figure A. l2 Relationships between TBARS values and the ratio of aliphatic 
to olefinic protons (Rao) and ratio of aliphatic to diallylmethylene 
protons tRa.d) of oxidized DHA. EPA and EPA+DHA-enriched 
borage oils <80) and unmodified BO 



• Unmodified BO (r = 0.978) • Unmodified BO (r = 0.983) 

• DHA-enriched BO (r::: 0.885) • DHA-enriched 80 (r = 0.926) 

.. EPA-enriched 80 (r = 0.936, .. EPA-enriched 80 (r = 0.954) 

• EPA+DHA-enriched 80 (r = 0.963) 
., EPA+DHA-enriched BO (r = 0.980) 
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Figure A. 13 Relationships between TBARS values and the ratio of aliphatic 
to olefinic protons ( R110 ) and ratio of aliphatic to diallylmethylene 
protons ( R:td) of oxidized DHA. EPA and EPA+DHA-enriched 
evening primrose oils <EPO) and unmodified EPO 



• Unmodified EPO (r = 0.881) • Unmodified EPO (r • 0.779) 

• DHA•nriched EPO (r = 0.915) • DHA•nriched EPO (r = 0.937) 

A EPA•nriched EPO (r = 0.976) .. EPA_.nriched EPO (r = 0.960) 

• EPA+DHA•nriched EPO (r = 0.967) • EPA+DHA~mriched EPO (r = 0.972) 
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Figure A.l4 Relationships between hexanal contents and the ratio of aliphatic 
to olefinic protons (Ra0 ) and ratio of aliphatic to diallylmethyler.-: 
protons (Rad) of oxidized DHA. EPA and EPA+DHA-enriched 
borage oils (80) and unmodified 80 



• Unmodified BO (r = 0.965) • Unmodified BO (r = 0.948) 

• DHA•nriched BO (r = 0.987) • DHA-enriched 80 (r = 0.996) 

• EPA-enriched 80 (r = 0.978) • EPA-enriched 80 (r = 0.969) 

• EPA+DHA-enriched BO (r = 0.962) • EPA+DHA-enriched BO (r == 0.976) 
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Figure A. 15 Relationships between hexanal contents and the ratio of aliphatic 
to olefinic protons (R30 ) and ratio of aliphatic to diallylmethylene 

protons tR;u1) of oxidized DHA. EPA and EPA+DHA-enriched 
evening primrose oils (EPO) and unmodified EPO 



• Unmodified EPO (r = 0.960) • Unmodified EPO (r = 0.948) 

• DHA•nrlched EPO (r = 0.965) • DHA-enriched EPO (r = 0.961) 

.. EPA4nriched EPO (r = 0.991) .. EPA-enriched EPO (r = 0.994) 

• EPA+DHA-enriched EPO (r = 0.954) • EPA+DHA-enriched EPO (r = 0.963) 
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Figure A. 16 Relationships between propanal contents and lhe ratio of aliphatic 
to oletinic protons (R,10 ) and ratio of aliphatic to diallylmethylene 

protons (R:ld) of oxidized DHA. EPA and EPA+DHA-enriched 
borage oils (80) 
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Figure A.l7 Relationships between propanal contents and the ratio of aliphatic 
to olefinic protons (R,10 ) and ratio of aliphatic to diaJlylmethylene 
protons (Rad) of oxidized DHA. EPA and EPA+DHA-enriched 
evening primrose oils (EPO) 



• DHA•nriched EPO (r :: 0.958) • DHA•nriched EPO (r :: 0.975) 

• EPA4nriched EPO (r :: 0.981) • EPA•nriched EPO (r:: 0.990) 

• EPA+DHA•nriched EPO (r:: 0.950) • EPA+DHA4nriched EPO (r:: 0.952) 
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APPENDIX 2 

Details of data analysis obtained by SAS programme for optimization of 

incorporation of EPA+DHA (%) into borage oil 



Y = EPA+DHA incorporation (0 'o) 

x. = Amount of enzyme (units) 

x~ = Reaction temperature (CC) 

XJ = Reaction time (h) 

Cod1ng Coeffic1ents for the Independent var1ables 

Factor Subtracted off 

X1 

X2 
X3 

250.000000 
45 . 000000 
18 . 000000 

Response Surface for Vanable 

Response Mean 
Root MSE 
A-Square 
Coef . of vanation 

Degrees 
of Type I Sum 

Regression Freedom of Squares 

Linear 3 123 . 326000 
Quadratic 3 178.728476 
Cross product 3 17.020000 
Total Regress 9 319.074476 

Degrees 
of Sum of 

Residual Freedom Squares 

Lack of Fit 5 1 . 849446 
Pure Error 2 1.326667 
Total Error 7 3.176113 

Divlded by 

100.000000 
15.000000 
12.000000 

Y: \ TOTAL DHA+EPA 

29.923529 
0.673595 

0.9901 
2.2511 

R -Square F-Ratio 

0.3827 90 . 602 
0 . 5546 131.3 
0.0528 12.504 
0.9901 78 . 136 

Mean Square F-Rat i o 

0.369889 0 . 558 
0 . 663333 
0.453730 

Prob > F 

0.0000 
0 . 0000 
0.0034 
0.0000 

Prob > F 

0.7413 



Degrees 
of Parameter Standard T for HO: 

Parameter Freedom Esumate Error Parameter=O Prob > T 

INTERCEPT · 34.367113 3.958235 ·8.682 0.0001 
X1 0. 173087 0.022175 7.806 0.0001 
X2 1.648160 0.171582 9.606 0.0000 
X3 0.860100 0.130023 6.615 0.0003 
X1"X1 -0.000224 0.000041152 -5.440 0.0010 
X2"X1 -0.000500 0.000159 -3. 149 0.0162 
X2"X2 -0.017950 0 . 001829 -9.814 0.0000 
X3"X1 -0.001042 0.000198 -5.249 0.0012 
X3"X2 0.000278 0.001323 0.210 0 . 8397 
X3"X3 -0.011033 0.002858 ·3.861 0 . 0062 

Parameter 
Est1mate 

from Coded 
Parameter Data 

INTERCEPT 34 . 550704 
X1 1. 990000 
X2 -1.310000 
X3 2.580000 
X1"X1 -2.238732 
X2•X1 -0.750000 
X2•X2 -4.038732 
X3•X1 -1.250000 
XJ•X2 0 . 050000 
X3•X3 -1.588732 

Degrees 
of Sum of 

Factor Freedom Squares Mean Square F-Ratio Prob > F 

X1 4 70 . 029170 17.507293 38.585 0.0001 
X2 4 65.383133 16.345783 36.025 0.0001 
X3 4 85.846604 21.461651 47.300 0.0000 



Coded 
Radius 

0.0 
0 . 1 
0.2 
0 . 3 
0 . 4 
0.5 
0.6 
0 . 7 
0.8 
0.9 
1 .o 

Factor 

Canonical Analys1s of Response Surface 
(based on coded data) 

Cnt1cal Value 
Coded Uncoded 

X1 0 . 280139 278.013881 ENZYME UNITS 
X2 -0 . 183865 42.242030 TEMP 
X3 0.698870 26 . 386434 TIME 

Preellctea value at stat1onary po1nt 35 . 851415 

Eigenvectors 
Eigenvalues X1 X2 X3 

- 1. 192502 -0.531615 0 . 077450 0.843437 
·2 . 555843 0 . 820811 -0. 198541 0 . 535585 
-4 . 1 17852 0.208938 0 . 977028 0.041975 

Stationary point is a max1mum. 

Estimated Ridge of Maximum Response for Variable Y: \ TOTAL DHA+EPA 

Estimated Standard Uncoded Factor Values 
Response Error X1 X2 

34.550704 0.288231 250.000000 45.000000 
34.876896 0.287920 255.553676 44.470911 
35. 153744 0.287112 260.799307 43.997763 
35 .382268 0 . 286258 265.605589 43 . 575561 
35.563652 0.286282 269.828162 43.202090 
35.699311 0.288809 273.313384 42.877219 
35.790939 0 . 296368 275 . 912988 42.601997 
35.840514 0.312332 277.510143 42.377429 
35.850235 0 . 340266 278.049199 42.203157 
35.822393 0 . 382823 277.553197 42 . 076576 
35.759217 0.440948 276 . 116789 41 . 992854 

X3 

18 . 000000 
18.903713 
19 .8541 12 
20 .855613 
21.912770 
23.028860 
24.204061 
:.:.:. ~33715 

26.707721 
28.011899 
29.330952 










