84 research outputs found

    The Effect of Environmental Enrichment on Glutathione-Mediated Xenobiotic Metabolism and Antioxidation in Normal Adult Mice

    Get PDF
    Olfactory bulb (OB) plays an important role in protecting against harmful substances via the secretion of antioxidant and detoxifying enzymes. Environmental enrichment (EE) is a common rehabilitation method and known to have beneficial effects in the central nervous system. However, the effects of EE in the OB still remain unclear. At 6 weeks of age, CD-1® (ICR) mice were assigned to standard cages or EE cages. After 2 months, we performed proteomic analysis. Forty-four up-regulated proteins were identified in EE mice compared to the control mice. Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes Pathway demonstrated that the upregulated proteins were mainly involved in metabolic pathways against xenobiotics. Among those upregulated proteins, 9 proteins, which participate in phase I or II of the xenobiotic metabolizing process and are known to be responsible for ROS detoxification, were validated by qRT-PCR. To explore the effect of ROS detoxification mediated by EE, glutathione activity was measured by an ELISA assay. The ratio of reduced glutathione to oxidized glutathione was significantly increased in EE mice. Based on a linear regression analysis, GSTM2 and UGT2A1 were found to be the most influential genes in ROS detoxification. For further analysis of neuroprotection, the level of iNOS and the ratio of Bax to Bcl-2 were significantly decreased in EE mice. While TUNEL+ cells were significantly decreased, Ki67+ cells were significantly increased in EE mice, implicating that EE creates an optimal state for xenobiotic metabolism and antioxidant activity. Taken together, our results suggested that EE protects olfactory layers via the upregulation of glutathione-related antioxidant and xenobiotic metabolizing enzymes, eventually lowering ROS-mediated inflammation and apoptosis and increasing neurogenesis. This study may provide an opportunity for a better understanding of the beneficial effects of EE in the OB

    The Impact of Ripening Time on Technological Quality Traits, Chemical Change and Sensory Characteristics of Dry-cured Loin

    Get PDF
    The effect of ripening time on the technological quality traits, fatty acid compositions and sensory characteristics of dry-cured loin was studied. Pork loins (n = 102) at 24 h post-mortem were used to produce dry-cured loins. The dry-cured loins were assessed at 30, 60, and 90 days of ripening for the aforementioned characteristics. Our results showed that the water activity (aw) decreased (p<0.05) up to 60 days and did not change thereafter. The lipid oxidation and weight loss levels significantly (p<0.05) increased with increased ripening time. The Commission Internationale de l’Eclairage (CIE) L* decreased for 90 days while CIE a* increased for 60 days and did not increase thereafter. More noticeably, the levels of most of unsaturated fatty acids and total polyunsaturated fatty acids significantly decreased as increasing ripening time up to 90 days. The 30 days-ripened loins had lower (p<0.05) color, flavor and overall acceptability scores than the loins ripened for 60 and 90 days, however, no differences in sensory traits occurred between the 60 and 90 day-ripened samples. Based on the results obtained in the present study, it is suggested that the ripening duration between 30 and 60 days could be more appropriate for producing dry-cured loin product with higher quality and economic benefits

    Effect of Particular Breed on the Chemical Composition, Texture, Color, and Sensorial Characteristics of Dry-cured Ham

    Get PDF
    The present study demonstrates the impact of specific breed on the characteristics of dry-cured ham. Eighty thighs from Korean native pig (KNP), crossbreed (Landrace×Yorkshire)♀×Duroc♂ (LYD), Berkshire (Ber), and Duroc (Du) pig breeds (n = 10 for each breed) were used for processing of dry-cured ham. The thighs were salted with 6% NaCl (w/w) and 100 ppm NaNO2, and total processing time was 413 days. The effects of breed on the physicochemical composition, texture, color and sensory characteristics were assessed on the biceps femoris muscle of the hams. The results revealed that the highest weight loss was found in the dry-cured ham of LYD breed and the lowest weight loss was found in Ber dry-cured ham. The KNP dry-cured ham contain higher intramuscular fat level than other breed hams (p<0.05). It was observed that the dry-cured ham made from KNP breed had the lowest water activity value and highest salt content, while the LYD dry-cure ham had higher total volatile basic nitrogen content than the Ber and Du hams (p<0.05). Zinc, iron and total monounsaturated fatty acids levels were higher in KNP ham while polyunsaturated fatty acids levels were higher in Du ham when compared to other breed hams (p<0.05). Additionally, the KNP dry-cured ham possessed higher Commission International de l’Eclairage (CIE) a* value, while the Du dry-cured ham had higher L*, CIE b* and hue angle values (p<0.05). Furthermore, breed significantly affected the sensory attributes of dry-cured hams with higher scores for color, aroma and taste found in KNP dry-cured ham as compared to other breed hams (p<0.05). The overall outcome of the study is that the breed has a potential effect on the specific chemical composition, texture, color and sensorial properties of dry-cured hams. These data could be useful for meat processors to select the suitable breeds for economical manufacturing of high quality dry-cured hams

    Zebrafish as an animal model in epilepsy studies with multichannel EEG recordings

    Get PDF
    Despite recent interest in using zebrafish in human disease studies, sparked by their economics, fecundity, easy handling, and homologies to humans, the electrophysiological tools or methods for zebrafish are still inaccessible. Although zebrafish exhibit more significant larval-adult duality than any other animal, most electrophysiological studies using zebrafish are biased by using larvae these days. The results of larval studies not only differ from those conducted with adults but also are unable to delicately manage electroencephalographic montages due to their small size. Hence, we enabled noninvasive long-term multichannel electroencephalographic recording on adult zebrafish using customdesigned electrodes and perfusion system. First, we exploited demonstration of long-term recording on pentylenetetrazole-induced seizure models, and the results were quantified. Second, we studied skin- electrode impedance, which is crucial to the quality of signals. Then, seizure propagations and gender differences in adult zebrafish were exhibited for the first time. Our results provide a new pathway for future neuroscience research using zebrafish by overcoming the challenges for aquatic organisms such as precision, serviceability, and continuous water seepage. © The Author(s) 2017.1

    Doinseunggitang Ameliorates Endothelial Dysfunction in Diabetic Atherosclerosis

    Get PDF
    Atherosclerosis, a chronic and progressive disease characterized by vascular inflammation, is a leading cause of death in diabetes patients. Doinseunggitang (DYSGT), traditional prescription, has been used for promoting blood circulation to remove blood stasis. The aim of this study was to investigate the beneficial effects of DYSGT on endothelial dysfunction in diabetic atherosclerosis animal model. Apolipoprotein E knockout (ApoE KO) mice fed on a Western diet were treated with DYSGT (200 mg/kg/day). DYSGT significantly lowered blood glucose level and glucose tolerance as well as systolic blood pressure. Metabolic parameter showed that DYSGT markedly decreased triglyceride and LDL-cholesterol levels. In the thoracic aorta, the impairment of vasorelaxation response to acetylcholine and atherosclerotic lesion was attenuated by DYSGT. Furthermore, DYSGT restored the reduction of endothelial nitric oxide synthase (eNOS) expression, leading to the inhibition of intracellular adhesion molecule-1 (ICAM-1) and endothelin-1 (ET-1) expression. In conclusion, DYSGT improved the development of diabetic atherosclerosis via attenuation of the endothelial dysfunction, possibly by inhibiting ET-1, cell adhesion molecules, and lesion formation. Therefore, these results suggest that Korean traditional prescription Doinseunggitang may be useful in the treatment and prevention of diabetic vascular complications

    Toward Accurate Extraction of Respiratory Frequency From the Photoplethysmogram: Effect of Measurement Site

    Get PDF
    Background: It is known that the respiration-modulated photoplethysmographic (PPG) signals could be used to derive respiratory frequency (RF) and that PPG signals could be measured from different body sites. However, the accuracy of RF derived from PPG signals of different body sites has not been comprehensively investigated. Objective: This study aims to investigate the difference in the accuracy of PPG-derived RFs between measurements from different body sites, respectively, for normal and deep breathing conditions. Methods: Under normal and deep breathing patterns, the PPG signals were recorded sequentially in a randomized order from six body sites [finger, wrist under (anatomically volar), wrist upper (dorsal), earlobe, and forehead] of 36 healthy subjects. Simultaneously, the reference respiratory signal was measured by a respiratory belt on the chest. Using the frequency demodulation approach, respiratory signals were extracted from PPG signals for calculating RF by power spectral density. The bias between PPG-derived and reference RFs was then analyzed statistically using analysis of variance and non-parametric tests, Bland-Altman analysis, and linear regression to investigate the difference in RF bias between different sites. Results: The RF bias was significantly influenced by the breathing pattern and measurement site (both p 0.05) and significant in the other sites (all p 0.05). The linearity between PPG-derived and reference RFs was highest at the forehead (slope of best-fit line: 0.90, R2: 0.64), followed by the earlobe, finger, arm, and wrist under (slope: 0.71, R2: 0.40). Under deep breathing, there was no significant RF bias in all the measurement sites (p > 0.05) except forehead (p = 0.048). The effect of measurement site on RF bias was not significant (p > 0.05). The finger had the smallest RF bias and the narrowest limits of agreement. Conclusion: This study has demonstrated that the accuracy of PPG-derived RF depends on the measurement site and breathing pattern. The best sites are the forehead and finger, respectively, for normal and deep breathing patterns

    An elevated likelihood of stroke, ischemic heart disease, or heart failure in individuals with gout: a longitudinal follow-up study utilizing the National Health Information database in Korea

    Get PDF
    ObjectiveAccumulating evidence from other countries indicates potential associations between gout and cardiovascular diseases; however, the associations of gout with cardiovascular diseases, particularly stroke, ischemic heart disease, and heart failure, remain ambiguous in the Korean population. We hypothesized that individuals with gout are at a higher likelihood of stroke, ischemic heart disease, or heart failure. This study expands upon previous research by ensuring a comparable baseline between patient and control groups and analyzing 16 years of data derived from an extensive healthcare database.MethodsWe selected 22,480 patients with gout and 22,480 control individuals from the Korean National Health Insurance Service-Health Screening Cohort database (2002–2019), and matched them at a 1:1 ratio according to sex, age, income, and residence. A Cox proportional hazard model with weighted overlap was employed to examine the relationship between gout and the risk of stroke, ischemic heart disease, or heart failure after adjustment for several covariates.ResultsThe incidences of stroke, ischemic heart disease, or heart failure in participants with gout were slightly higher than those in controls (stroke: 9.84 vs. 8.41 per 1000 person-years; ischemic heart disease: 9.77 vs. 7.15 per 1000 person-years; heart failure: 2.47 vs. 1.46 per 1000 person-years). After adjustment, the gout group had an 11% (95% confidence interval [CI] = 1.04–1.19), 28% (95% CI = 1.19–1.37), or 64% (95% CI = 1.41–1.91) higher likelihood of experiencing stroke, ischemic heart disease, or heart failure, respectively, than the control group.ConclusionThe present findings suggest that individuals with gout in the Korean population, particularly those aged ≥ 60 years, were more likely to have stroke, ischemic heart disease, or heart failure

    Effect of feed spacer thickness on the fouling behavior in reverse osmosis process - A pilot scale study

    No full text
    The performance deterioration of RO membrane processes caused by the accumulation of rejected solutes on membrane surface is an inevitable phenomenon in membrane processes. The feed spacer in spiral wound reverse osmosis (RO) membrane modules can provide the structural support to keep feed channel open and also allow turbulent flow to mitigate solute concentration build-up at the vicinity of membrane surface. The objective of this study was to investigate the effect of feed spacer thickness on both membrane fouling behavior and cleaning efficiency in a pilot test during a 659 h operation. Furthermore, fouling load distribution was studied by measuring normalized differential pressure of individual elements in pressure vessels. Foulant analysis according to feed spacer thickness was also conducted to compare fouling propensities. This study showed that a thicker feed spacer could reduce membrane fouling and subsequently decrease membrane cleaning frequency and allow an even fouling load distribution along the modules installed in a pressure vessel.close0

    Microtiter Plate-Format Optode

    No full text

    High-Frequency Repetitive Magnetic Stimulation Enhances the Expression of Brain-Derived Neurotrophic Factor Through Activation of Ca2+–Calmodulin-Dependent Protein Kinase II–cAMP-Response Element-Binding Protein Pathway

    No full text
    Repetitive transcranial magnetic stimulation (rTMS) can be used in various neurological disorders. However, neurobiological mechanism of rTMS is not well known. Therefore, in this study, we examined the global gene expression patterns depending on different frequencies of repetitive magnetic stimulation (rMS) in both undifferentiated and differentiated Neuro-2a cells to generate a comprehensive view of the biological mechanisms. The Neuro-2a cells were randomly divided into three groups—the sham (no active stimulation) group, the low-frequency (0.5 Hz stimulation) group, and high-frequency (10 Hz stimulation) group—and were stimulated 10 min for 3 days. The low- and high-frequency groups of rMS on Neuro-2a cells were characterized by transcriptome array. Differentially expressed genes were analyzed using the Database of Annotation Visualization and Integrated Discovery program, which yielded a Kyoto Encyclopedia of Genes and Genomes pathway. Amphetamine addiction pathway, circadian entrainment pathway, long-term potentiation (LTP) pathway, neurotrophin signaling pathway, prolactin signaling pathway, and cholinergic synapse pathway were significantly enriched in high-frequency group compared with low-frequency group. Among these pathways, LTP pathway is relevant to rMS, thus the genes that were involved in LTP pathway were validated by quantitative real-time polymerase chain reaction and western blotting. The expression of glutamate ionotropic receptor N-methyl d-aspartate 1, calmodulin-dependent protein kinase II (CaMKII) δ, and CaMKIIα was increased, and the expression of CaMKIIγ was decreased in high-frequency group. These genes can activate the calcium (Ca2+)–CaMKII–cAMP-response element-binding protein (CREB) pathway. Furthermore, high-frequency rMS induced phosphorylation of CREB, brain-derived neurotrophic factor (BDNF) transcription via activation of Ca2+–CaMKII–CREB pathway. In conclusion, high-frequency rMS enhances the expression of BDNF by activating Ca2+–CaMKII–CREB pathway in the Neuro-2a cells. These findings may help clarify further therapeutic mechanisms of rTMS
    corecore