26 research outputs found

    A grid-enabled web service for low-resolution crystal structure refinement

    Get PDF
    The deformable elastic network (DEN) method for reciprocal-space crystallographic refinement improves crystal structures, especially at resolutions lower than 3.5 Å. The DEN web service presented here intends to provide structural biologists with access to resources for running computationally intensive DEN refinements

    Conformational Locking upon Cooperative Assembly of Notch Transcription Complexes

    Get PDF
    SummaryThe Notch intracellular domain (NICD) forms a transcriptional activation complex with the DNA-binding factor CSL and a transcriptional co-activator of the Mastermind family (MAML). The “RAM” region of NICD recruits Notch to CSL, facilitating the binding of MAML at the interface between the ankyrin (ANK) repeat domain of NICD and CSL. Here, we report the X-ray structure of a human MAML1/RAM/ANK/CSL/DNA complex, and probe changes in component dynamics upon stepwise assembly of a MAML1/NICD/CSL complex using HX-MS. Association of CSL with NICD exerts remarkably little effect on the exchange kinetics of the ANK domain, whereas MAML1 binding greatly retards the exchange kinetics of ANK repeats 2-3. These exchange patterns identify critical features contributing to the cooperative assembly of Notch transcription complexes (NTCs), highlight the importance of MAML recruitment in rigidifying the ANK domain and stabilizing its interface with CSL, and rationalize the requirement for MAML1 in driving cooperative dimerization of NTCs on paired-site DNA

    U6 snRNA m6A modification is required for accurate and efficient cis- and trans-splicing of <i>C. elegans</i> mRNAs

    Get PDF
    pre-mRNA splicing is a critical feature of eukaryotic gene expression. Many eukaryotes use cis-splicing to remove intronic sequences from pre-mRNAs. In addition to cis-splicing, many organisms use trans-splicing to replace the 5â€Č ends of mRNAs with a non-coding spliced-leader RNA. Both cis- and trans-splicing rely on accurately recognising splice site sequences by spliceosomal U snRNAs and associated proteins. Spliceosomal snRNAs carry multiple RNA modifications with the potential to affect different stages of pre-mRNA splicing. Here, we show that m6A modification of U6 snRNA A43 by the RNA methyltransferase METT-10 is required for accurate and efficient cis- and trans-splicing of C. elegans pre-mRNAs. The absence of U6 snRNA m6A modification primarily leads to alternative splicing at 5â€Č splice sites. Furthermore, weaker 5â€Č splice site recognition by the unmodified U6 snRNA A43 affects splicing at 3â€Č splice sites. U6 snRNA m6A43 and the splicing factor SNRNP27K function to recognise an overlapping set of 5â€Č splice sites with an adenosine at +4 position. Finally, we show that U6 snRNA m6A43 is required for efficient SL trans-splicing at weak 3â€Č trans-splice sites. We conclude that the U6 snRNA m6A modification is important for accurate and efficient cis- and trans-splicing in C. elegans

    U6 snRNA m6A modification is required for accurate and efficient cis- and trans-splicing of <i>C. elegans</i> mRNAs

    Get PDF
    pre-mRNA splicing is a critical feature of eukaryotic gene expression. Many eukaryotes use cis-splicing to remove intronic sequences from pre-mRNAs. In addition to cis-splicing, many organisms use trans-splicing to replace the 5â€Č ends of mRNAs with a non-coding spliced-leader RNA. Both cis- and trans-splicing rely on accurately recognising splice site sequences by spliceosomal U snRNAs and associated proteins. Spliceosomal snRNAs carry multiple RNA modifications with the potential to affect different stages of pre-mRNA splicing. Here, we show that m6A modification of U6 snRNA A43 by the RNA methyltransferase METT-10 is required for accurate and efficient cis- and trans-splicing of C. elegans pre-mRNAs. The absence of U6 snRNA m6A modification primarily leads to alternative splicing at 5â€Č splice sites. Furthermore, weaker 5â€Č splice site recognition by the unmodified U6 snRNA A43 affects splicing at 3â€Č splice sites. U6 snRNA m6A43 and the splicing factor SNRNP27K function to recognise an overlapping set of 5â€Č splice sites with an adenosine at +4 position. Finally, we show that U6 snRNA m6A43 is required for efficient SL trans-splicing at weak 3â€Č trans-splice sites. We conclude that the U6 snRNA m6A modification is important for accurate and efficient cis- and trans-splicing in C. elegans

    Notch Ankyrin Repeat Domain Variation Influences Leukemogenesis and Myc Transactivation

    Get PDF
    , cell-based and structural analyses to compare the abilities of activated Notch1-4 to support T cell development, induce T cell acute lymphoblastic leukemia/lymphoma (T-ALL), and maintain T-ALL cell growth and survival., a direct Notch target that has an important role in Notch-associated T-ALL.We conclude that the leukemogenic potentials of Notch receptors vary, and that this functional difference stems in part from divergence among the highly conserved ankyrin repeats, which influence the transactivation of specific target genes involved in leukemogenesis

    The 2nd DBCLS BioHackathon: interoperable bioinformatics Web services for integrated applications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The interaction between biological researchers and the bioinformatics tools they use is still hampered by incomplete interoperability between such tools. To ensure interoperability initiatives are effectively deployed, end-user applications need to be aware of, and support, best practices and standards. Here, we report on an initiative in which software developers and genome biologists came together to explore and raise awareness of these issues: BioHackathon 2009.</p> <p>Results</p> <p>Developers in attendance came from diverse backgrounds, with experts in Web services, workflow tools, text mining and visualization. Genome biologists provided expertise and exemplar data from the domains of sequence and pathway analysis and glyco-informatics. One goal of the meeting was to evaluate the ability to address real world use cases in these domains using the tools that the developers represented. This resulted in i) a workflow to annotate 100,000 sequences from an invertebrate species; ii) an integrated system for analysis of the transcription factor binding sites (TFBSs) enriched based on differential gene expression data obtained from a microarray experiment; iii) a workflow to enumerate putative physical protein interactions among enzymes in a metabolic pathway using protein structure data; iv) a workflow to analyze glyco-gene-related diseases by searching for human homologs of glyco-genes in other species, such as fruit flies, and retrieving their phenotype-annotated SNPs.</p> <p>Conclusions</p> <p>Beyond deriving prototype solutions for each use-case, a second major purpose of the BioHackathon was to highlight areas of insufficiency. We discuss the issues raised by our exploration of the problem/solution space, concluding that there are still problems with the way Web services are modeled and annotated, including: i) the absence of several useful data or analysis functions in the Web service "space"; ii) the lack of documentation of methods; iii) lack of compliance with the SOAP/WSDL specification among and between various programming-language libraries; and iv) incompatibility between various bioinformatics data formats. Although it was still difficult to solve real world problems posed to the developers by the biological researchers in attendance because of these problems, we note the promise of addressing these issues within a semantic framework.</p

    Matching theory: subgraphs with degree constraints and other properties

    No full text
    In this thesis, three generalizations of the matching problem are considered. The first problem is the existence of matrices with given row and column sums. This problem can be interpreted as the f-factor problem of a bipartite graph. The well-known existence theorem follows from maxfiow-mincut theorem, but it contains an exponential number (in the number of rows) of inequalities. We generalize the Gale-Ryser theorem and obtain some conditions under which this exponential number of inequalities can be reduced to a polynomial number of inequalities. The second problem is the general factor problem. Let G = (V, E) be a multigraph. An arbitrary subset BL, of {O, 1,2,. . . , deg(v)} is assigned to each vertex ʋ E ÆČ. We call a B-factor a spanning subgraph F of G such that deg (ʋ) ∈ Bv for every vertex ʋ ∈ V. A set B is said to have a gap of length p ≄1 if there exists an integer k such that k+ 1,.‱.,k+p ∉ Bv, and yet k,k+p+ 1 ∉ Bv. It’s known that the problem is NP-complete if we allow gaps of length more than one. We extend the algorithm of CornuĂ©jols for simple graphs and obtain a strongly polynomial algorithm for finding a B-factor when each Bv doesn’t have a gap of length 2 or more. A new augmenting walk that need not alternate is introduced. The third problem is the square-free two-factor problem. A square-free two-factor is a two-factor in which the cycles don’t have length 4, i.e. are not squares. We obtain an augmenting path theorem like Berge’s augmenting path theorem for a 1-matching. Also we obtain a polynomial algorithm for finding a square-free two-factor when the squares of G are vertex-disjoint.Science, Faculty ofMathematics, Department ofGraduat
    corecore