14 research outputs found

    Culturally Responsive Distance Counselor Education for International Counseling Students

    Get PDF
    Counselor education programs have increasingly offered distance education during the last decades. As one of the growing student populations in counselor education programs, international students need to be given more attention pertaining to their cultural and educational experiences as counseling students. Although distance learning in counselor education has gained empirical support for its effectiveness, it may still pose challenges to international counseling students due to their unique characteristics such as language barriers and cultural differences, which may render differing qualities of students’ learning experiences. Aiming to enhance our understanding of this student population to provide culturally responsive distance counselor education, the present article introduces international students in the context of distance counselor education and discusses implications for supporting international students in distance counselor education

    Dynamics of Online Engagement: Counseling Students’ Experiences and Perceptions in Distance Learning

    Get PDF
    In this article, the authors present counseling students’ personal accounts of their experiences in distance education with a focus on online engagement based on an extensive review of the counseling literature. In addition, an evaluation tool was introduced for gathering qualitative and quantitative information regarding patterns of instructor engagement efforts and styles. Facilitating factors for experiential online learning were also identified from the students’ perceptions of online learning experience. Finally, the results were used to make specific recommendations for counselor educators to enhance their teaching efficacy and engagement

    Interaction between lead and noradrenergic genotypes affects neurocognitive functions in attention-deficit/hyperactivity disorder: a case control study

    Get PDF
    Abstract Background Lead is known to be associated with attention-deficit/hyperactivity disorder (ADHD) even at low concentrations. We aimed to evaluate neurocognitive functions associated with lead in the blood and the interactions between lead and dopaminergic or noradrenergic pathway-related genotypes in youths with ADHD. Methods A total of 259 youths with ADHD and 96 healthy controls (aged 5–18 years) enrolled in this study. The Korean Kiddie Schedule for Affective Disorders and Schizophrenia–Present and Lifetime version was conducted for psychiatric diagnostic evaluation. Blood lead levels were measured, and their interaction with dopaminergic or noradrenergic genotypes for ADHD; namely, the dopamine transporter (DAT1), dopamine receptor D4 (DRD4), and alpha-2A-adrenergic receptor (ADRA2A) genotypes were investigated. All participants were assessed using the ADHD Rating Scale-IV (ADHD-RS). Participants also completed the continuous performance test (CPT) and Stroop Color-Word Test (SCWT). Analysis of covariance was used for comparison of blood lead levels between ADHD and control groups. A multivariable linear regression model was used to evaluate the associations of blood lead levels with the results of ADHD-RS, CPT, and SCWT; adjusted for intelligence quotient (IQ), age, and sex. A path analysis model was used to identify the mediating effects of neurocognitive functions on the effects of blood lead on ADHD symptoms. To evaluate the effect of the interaction between blood lead and genes on neuropsychological functions, hierarchical regression analyses were performed. Results There was a significant difference in blood lead levels between the ADHD and control groups (1.4 ± 0.5 vs. 1.3 ± 0.5 μg/dL, p = .005). Blood lead levels showed a positive correlation with scores on omission errors(r = .158, p = .003) and response time variability (r = .136, p = .010) of CPT. In the multivariable linear regression model, blood lead levels were associated with omission errors (B = 3.748, p = .045). Regarding the effects of lead on ADHD symptoms, hyperactivity-impulsivity was mediated by omission errors. An interaction effect was detected between ADRA2A DraI genotype and lead levels on omission errors (B = 5.066, p = .041). Conclusions Our results indicate that neurocognitive functions at least partly mediate the association between blood lead levels and ADHD symptoms, and that neurocognitive functions are affected by the interaction between blood lead levels and noradrenergic genotype

    Chemical Structure and Biological Activities of Secondary Metabolites from Salicornia europaea L.

    No full text
    Salicornia europaea L. is a halophyte that grows in salt marshes and muddy seashores, which is widely used both as traditional medicine and as an edible vegetable. This salt-tolerant plant is a source of diverse secondary metabolites with several therapeutic properties, including antioxidant, antidiabetic, cytotoxic, anti-inflammatory, and anti-obesity effects. Therefore, this review summarizes the chemical structure and biological activities of secondary metabolites isolated from Salicornia europaea L

    DNA-mediated control of Au shell nanostructure and controlled intra-nanogap for a highly sensitive and broad plasmonic response range

    No full text
    We report DNA-mediated simple synthetic methods to obtain anisotropic plasmonic nanostructures with a tailorable intra-nanogap distance ranging from 0.9 to 4.0 nm. Anisotropic half-shell structures with sub-1.0 nm intra-nanogaps showed a wavelength-independent surface-enhanced Raman scattering (SERS) intensity and a highly sensitive SERS response to NIR light. We found that the reaction conditions such as pH and NaCl concentration are responsible for the resulting shell structures and intra-nanogap distances. Three noticeable plasmonic nanostructures [i.e., half-shell with sub-1.0 nm nanogaps, closed-shell with a wide nanogap (2.1 nm) and star-shaped with an irregular nanogap (1.5-4.0 nm)] were synthesized, and solution-based and single particle-based Raman measurements showed a strong relationship between the plasmonic structures and the SERS intensity. An understanding of DNA-mediated control for nanogap-engineered plasmonic nanostructures and studies of SERS-activity relationships using single particle-correlated measurements can provide new insights into the design of new plasmonic nanostructures and SERS-based biosensing applications
    corecore