11,812 research outputs found

    Memory and superposition in a spin glass

    Full text link
    Non-equilibrium dynamics in a Ag(Mn) spin glass are investigated by measurements of the temperature dependence of the remanent magnetisation. Using specific cooling protocols before recording the thermo- or isothermal remanent magnetisations on re-heating, it is found that the measured curves effectively disclose non-equilibrium spin glass characteristics such as ageing and memory phenomena as well as an extended validity of the superposition principle for the relaxation. The usefulness of this "simple" dc-method is discussed, as well as its applicability to other disordered magnetic systems.Comment: REVTeX style; 8 pages, 4 figure

    Spinodal nanodecomposition in magnetically doped semiconductors

    Full text link
    This review presents the recent progress in computational materials design, experimental realization, and control methods of spinodal nanodecomposition under three- and two-dimensional crystal-growth conditions in spintronic materials, such as magnetically doped semiconductors. The computational description of nanodecomposition, performed by combining first-principles calculations with kinetic Monte Carlo simulations, is discussed together with extensive electron microscopy, synchrotron radiation, scanning probe, and ion beam methods that have been employed to visualize binodal and spinodal nanodecomposition (chemical phase separation) as well as nanoprecipitation (crystallographic phase separation) in a range of semiconductor compounds with a concentration of transition metal (TM) impurities beyond the solubility limit. The role of growth conditions, co-doping by shallow impurities, kinetic barriers, and surface reactions in controlling the aggregation of magnetic cations is highlighted. According to theoretical simulations and experimental results the TM-rich regions appear either in the form of nanodots (the {\em dairiseki} phase) or nanocolumns (the {\em konbu} phase) buried in the host semiconductor. Particular attention is paid to Mn-doped group III arsenides and antimonides, TM-doped group III nitrides, Mn- and Fe-doped Ge, and Cr-doped group II chalcogenides, in which ferromagnetic features persisting up to above room temperature correlate with the presence of nanodecomposition and account for the application-relevant magneto-optical and magnetotransport properties of these compounds. Finally, it is pointed out that spinodal nanodecomposition can be viewed as a new class of bottom-up approach to nanofabrication.Comment: 72 pages, 79 figure

    The Cosmic Infrared Background Experiment (CIBER): Instrumentation and First Results

    Get PDF
    Ultraviolet emission from the first generation of stars in the Universe ionized the intergalactic medium in a process which was completed by z similar to 6; the wavelength of these photons has been redshifted by (1 + z) into the near infrared today and can be measured using instruments situated above the Earth's atmosphere. First flying in February 2009, the Cosmic Infrared Background ExpeRiment (CIBER) comprises four instruments housed in a single reusable sounding rocket borne payload. CIBER will measure spatial anisotropies in the extragalactic IR background caused by cosmological structure from the epoch of reionization using two broadband imaging instruments, make a detailed characterization of the spectral shape of the IR background using a low resolution spectrometer, and measure the absolute brightness of the Zodiacal light foreground with a high resolution spectrometer in each of our six science fields. The scientific motivation for CIBER and details of its first and second flight instrumentation will be discussed. First flight results on the color of the zodiacal light around 1 mu m and plans for the future will also be presented

    Observations of the Near-infrared Spectrum of the Zodiacal Light with CIBER

    Get PDF
    Interplanetary dust (IPD) scatters solar radiation which results in the zodiacal light that dominates the celestial diffuse brightness at optical and near-infrared wavelengths. Both asteroid collisions and cometary ejections produce the IPD, but the relative contribution from these two sources is still unknown. The low resolution spectrometer (LRS) onboard the Cosmic Infrared Background ExpeRiment (CIBER) observed the astrophysical sky spectrum between 0.75 and 2.1 μm over a wide range of ecliptic latitude. The resulting zodiacal light spectrum is redder than the solar spectrum, and shows a broad absorption feature, previously unreported, at approximately 0.9 μm, suggesting the existence of silicates in the IPD material. The spectral shape of the zodiacal light is isotropic at all ecliptic latitudes within the measurement error. The zodiacal light spectrum, including the extended wavelength range to 2.5 μm using Infrared Telescope in Space (IRTS) data, is qualitatively similar to the reflectance of S-type asteroids. This result can be explained by the proximity of S-type asteroidal dust to Earth's orbit, and the relatively high albedo of asteroidal dust compared with cometary dust

    The Cosmic Infrared Background Experiment (CIBER): A Sounding Rocket Payload to Study the Near Infrared Extragalactic Background Light

    Get PDF
    The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the Zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, and electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown twice, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the second flight, and the scientific data from this flight are currently being analyzed

    Detection-Loophole-Free Test of Quantum Nonlocality, and Applications

    Full text link
    We present a source of entangled photons that violates a Bell inequality free of the "fair-sampling" assumption, by over 7 standard deviations. This violation is the first experiment with photons to close the detection loophole, and we demonstrate enough "efficiency" overhead to eventually perform a fully loophole-free test of local realism. The entanglement quality is verified by maximally violating additional Bell tests, testing the upper limit of quantum correlations. Finally, we use the source to generate secure private quantum random numbers at rates over 4 orders of magnitude beyond previous experiments.Comment: Main text: 5 pages, 2 figures, 1 table. Supplementary Information: 7 pages, 2 figure

    Practical long-distance quantum key distribution system using decoy levels

    Get PDF
    Quantum key distribution (QKD) has the potential for widespread real-world applications. To date no secure long-distance experiment has demonstrated the truly practical operation needed to move QKD from the laboratory to the real world due largely to limitations in synchronization and poor detector performance. Here we report results obtained using a fully automated, robust QKD system based on the Bennett Brassard 1984 protocol (BB84) with low-noise superconducting nanowire single-photon detectors (SNSPDs) and decoy levels. Secret key is produced with unconditional security over a record 144.3 km of optical fibre, an increase of more than a factor of five compared to the previous record for unconditionally secure key generation in a practical QKD system.Comment: 9 page

    Memory and chaos in an Ising spin glass

    Full text link
    The non-equilibrium dynamics of the model 3d-Ising spin glass - Fe0.55_{0.55}Mn0.45_{0.45}TiO3_3 - has been investigated from the temperature and time dependence of the zero field cooled magnetization recorded under certain thermal protocols. The results manifest chaos, rejuvenation and memory features of the equilibrating spin configuration that are very similar to those observed in corresponding studies of the archetypal RKKY spin glass Ag(Mn). The sample is rapidly cooled in zero magnetic field, and the magnetization recorded on re-heating. When a stop at constant temperature TsT_s is made during the cooling, the system evolves toward its equilibrium state at this temperature. The equilibrated state established during the stop becomes frozen in on further cooling and is retrieved on re-heating. The memory of the aging at TsT_s is not affected by a second stop at a lower temperature TsT'_s. Reciprocally, the first equilibration at TsT_s has no influence on the relaxation at TsT'_s, as expected within the droplet model for domain growth in a chaotic landscape.Comment: REVTeX style; 4 pages, 4 figure

    Successful Yukawa structures in Warped Extra Dimensions

    Get PDF
    For a RS model, with SM fields in the bulk and the Higgs boson on the TeV-brane, we suggest two specific structures for the Yukawa couplings, one based on a permutation symmetry and the other on the Universal Strength of Yukawa couplings hypothesis (USY). In USY, all Yukawa couplings have equal strength and the difference in the Yukawa structure lies in some complex phase. In both scenarios, all Yukawa couplings are of the same order of magnitude. Thus, the main features of the fermion hierarchies are explained through the RS geometrical mechanism, and not because some Yukawa coupling is extremely small. We find that the RS model is particularly appropriate to incorporate the suggested Yukawa configurations. Indeed, the RS geometrical mechanism of fermion locations along the extra dimension, combined with the two Yukawa scenarios, reproduces all the present experimental data on fermion masses and mixing angles. It is quite remarkable that in the USY case, only two complex phases of definite value +-Pi/2 are sufficient to generate the known neutrino mass differences, while at same time, permitting large leptonic mixing in agreement with experiment.Comment: 11 page

    Toda systems in closed string tachyon condensation

    Full text link
    We consider tttt^* equations appearing in the study of localized tachyon condensations. They are described by various Toda system when we consider the condensation by the lowest tachyon corresponding to the monomial xyxy. The tachyon potential is calculated as a solution to these equations. The Toda system appearing in the deformation of \C^2/\Z_n by xyxy is identical to that of DnD_n singularity deformed by xx. For \C^3/\Z_n with xyzxyz deformation, we find only generic non-simple form, similar to the case appearing in \C/\Z_5\to \C/\Z_3 and we discuss the difficulties in these cases.Comment: 20 pages, no figur
    corecore