3,681 research outputs found

    ADADA 2016 14TH international Conference for Asia Digital Art and Design Association - Relationship between perceived value in Omni-Channel Shopping and repurchase intention

    Get PDF
    Along with the development of ICT, the distribution strategy of existing companies has been changing to the ‘Omni-Channel’ strategy. According to the diversification of distribution channels, the value of customer shopping has also been changing. Consumers that shop within various distribution channels want to acquire benefits through new and diversified experiences. Thus, it is important to perform studies on whether continuous purchase is possible by continuing from values that are being satisfied by certain elements of the Omni-Channel by grasping the cognition of consumers. This study identifies the characteristics of Omni-Channel consumption, perceived usefulness through the ease-of-use by consumers, and relationships with repurchase intention. This study provides a theoretical basis to activate the Omni-Channel which may satisfy the demand of consumers by setting causal relationship between each element by conducting a survey

    Structural and histological characterization of oviductal magnum and lectin-binding patterns in Gallus domesticus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although chicken oviduct is a useful model and target tissue for reproductive biology and transgenesis, little is known because of the highly specific hormonal regulation and the lack of fundamental researches, including lectin-binding activities and glycobiology. Because lectin is attached to secreted glycoproteins, we hypothesized that lectin could be bound to secretory egg-white proteins, and played a crucial role in the generation of egg-white protein in the oviduct. Hence, the purpose of this study was to investigate the structural, histological and lectin-binding characteristics of the chicken oviductal magnum from juvenile and adult hens.</p> <p>Methods</p> <p>The oviductal magnums from juvenile and adult hens were prepared for ultrastructural analysis, qRT-PCR and immunostaining. Immunohistochemistry of anti-ovalbumin, anti-ESR1 and anti-PGR, and mRNA expression of egg-white genes and steroid hormone receptor genes were evaluated. Lectin histochemical staining was also conducted in juvenile and adult oviductal magnum tissues.</p> <p>Results</p> <p>The ultrastructural analysis showed that ciliated cells were rarely developed on luminal surface in juvenile magnum, but not tubular gland cells. In adult magnum, two types of epithelium and three types of tubular gland cells were observed. qRT-PCR analysis showed that egg-white genes were highly expressed in adult oviduct compared with the juvenile. However, mRNA expressions of <it>ESR1 </it>and <it>PGR </it>were considerably higher in juvenile oviduct than adult (<it>P </it>< 0.05). The immunohistochemical analysis showed that anti-ovalbumin antibody was detected in adult oviduct not in juvenile, unlikely anti-ESR1 and anti-PGR antibodies that were stained in both oviducts. In histological analysis, Toluidine blue was stained in juvenile and adult oviductal epithelia, and adult tubular glands located in the outer layer of oviductal magnum. In contrast, PAS was positive only in adult oviductal tubular gland. Lectins were selectively bound to oviductal epithelium, stroma, and tubular gland cells. Particularly, lectin-ConA and WGA were bound to electron-dense secretory granules in tubular gland.</p> <p>Conclusions</p> <p>The observation of ultrastructural analysis, mRNA expression, immunohistochemistry and lectin staining showed structural and physiological characterization of juvenile and adult oviductal magnum. Consequently, oviduct study could be helped to <it>in vitro </it>culture of chicken oviductal cells, to develop epithelial or tubular gland cell-specific markers, and to understand female reproductive biology and endocrinology.</p

    Palladium Catalysts for Dehydrogenation of Ammonia Borane with Preferential B−H Activation

    Get PDF
    Cationic Pd(II) complexes catalyzed the dehydrogenation of ammonia borane in the most efficient manner with the release of 2.0 equiv of H_2 in less than 60 s at 25 °C. Most of the hydrogen atoms were obtained from the boron atom of the ammonia borane. The first step of the dehydrogenation reaction was elaborated using density functional theory calculations

    Whole cell biosynthesis of a functional oligosaccharide, 2′-fucosyllactose, using engineered Escherichia coli

    Get PDF
    BACKGROUND: 2'-Fucosyllactose (2-FL) is a functional oligosaccharide present in human milk which protects against the infection of enteric pathogens. Because 2-FL can be synthesized through the enzymatic fucosylation of lactose with guanosine 5′-diphosphate (GDP)-l-fucose by α-1,2-fucosyltransferase (FucT2), an 2-FL producing Escherichia coli can be constructed through overexpressing genes coding for endogenous GDP- l-fucose biosynthetic enzymes and heterologous fucosyltransferase. RESULTS: The gene for FucT2 from Helicobacter pylori was introduced to the GDP- l-fucose producing recombinant E. coli BL21 star(DE3) strain. However, only small amount of 2-FL was produced in a batch fermentation because the E. coli BL21star(DE3) strain assimilated lactose instead of converting to 2-FL. As an alternative host, the E. coli JM109(DE3) strain which is incapable of assimilating lactose was chosen as a 2-FL producer. Whole cell biosynthesis of 2-FL from lactose was investigated in a series of batch fermentations using various concentrations of lactose. The results of batch fermentations showed that lactose was slowly assimilated by the engineered E. coli JM109(DE3) strain and 2-FL was synthesized without supplementation of another auxiliary sugar for cell growth. A maximum 2-FL concentration of 1.23 g/l was obtained from a batch fermentation with 14.5 g/l lactose. The experimentally obtained yield (g 2-FL/g lactose) corresponded to 20% of the theoretical maximum yield estimated by the elementary flux mode (EFM) analysis. CONCLUSIONS: The experimental 2-FL yield in this study corresponded to about 20% of the theoretical maximum yield, which suggests further modifications via metabolic engineering of a host strain or optimization of fermentation processes might be carried out for improving 2-FL yield. Improvement of microbial production of 2-FL from lactose by engineered E. coli would increase the feasibility of utilizing 2-FL as a prebiotic in various foods

    Fabrication of pyramidal probes with various periodic patterns and a single nanopore

    Get PDF
    The nanometer-scale patterned pyramidal probe with an electron beam-induced nanopore on the pyramid apex is an excellent candidate for an optical biosensor. The nanoapertures surrounded with various periodic groove patterns on the pyramid sides were fabricated using a focused ion beam technique, where the optical characteristics of the fabricated apertures with rectangular, circular, and elliptical groove patterns were investigated. The elliptical groove patterns on the pyramid were designed to maintain an identical distance between the grooves and the apex for the surface waves and, among the three patterns, the authors observed the highest optical transmission from the elliptically patterned pyramidal probe. A 103-fold increase of the transmitted optical intensity was observed after patterning with elliptical grooves, even without an aperture on the pyramid apex. The nanopore on the apex of the pyramid was fabricated using electron beam irradiation and was optically characterized

    Scale-up study for ex-vivo expansion of allogeneic natural killer cells in stirred-tank bioreactor

    Get PDF
    Natural killer (NK) cells are a type of lymphocyte in the blood that are responsible for innate and adaptive immune response, and they mature in the liver and bone marrow. Being a key role in host defense system with direct and indirect killing of virus-infected cells or cancer cells, NK cell has been considered an attractive candidate for cancer therapy. Peripheral blood shows the low frequency of NK cells, so ex vivo expansion method is important to obtain sufficient NK cells for therapeutic use. Currently, we successfully developed bioreactor process for NK cell expansion on lab-scale. Stirred-tank bioreactor could be considered as optimal alternative system for large-scale NK cell expansion compared with other ones because it is automated, less labor intensive, scalable, well-controlled and cost-effective. In bioreactor process, agitation is one of important parameters for NK cell expansion because it is necessary to provide homogenous culture conditions. So we defined effects of agitation in bioreactor and figured out an optimum condition. After that scale-up studies were carried out with manufacturing-scale bioreactor based on these results. The results in terms of growth rate, viability cytotoxicity and purity, were comparable with lab-scale

    PPM1A Controls Diabetic Gene Programming through Directly Dephosphorylating PPAR?? at Ser273

    Get PDF
    Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a master regulator of adipose tissue biology. In obesity, phosphorylation of PPAR gamma at Ser273 (pSer273) by cyclin-dependent kinase 5 (CDK5)/extracellular signal-regulated kinase (ERK) orchestrates diabetic gene reprogramming via dysregulation of specific gene expression. Although many recent studies have focused on the development of non-classical agonist drugs that inhibit the phosphorylation of PPAR gamma at Ser273, the molecular mechanism of PPAR gamma dephosphorylation at Ser273 is not well characterized. Here, we report that protein phosphatase Mg2+/Mn2+-dependent 1A (PPM1A) is a novel PPAR gamma phosphatase that directly dephosphorylates Ser273 and restores diabetic gene expression which is dysregulated by pSer273. The expression of PPM1A significantly decreases in two models of insulin resistance: diet-induced obese (DIO) mice and db/db mice, in which it negatively correlates with pSer273. Transcriptomic analysis using microarray and genotype-tissue expression (GTEx) data in humans shows positive correlations between PPM1A and most of the genes that are dysregulated by pSer273. These findings suggest that PPM1A dephosphorylates PPAR gamma at Ser273 and represents a potential target for the treatment of obesity-linked metabolic disorders

    Improved reversibility in lithium-oxygen battery: Understanding elementary reactions and surface charge engineering of metal alloy catalyst

    Get PDF
    Most Li-O-2 batteries suffer from sluggish kinetics during oxygen evolution reactions (OERs). To overcome this drawback, we take the lesson from other catalysis researches that showed improved catalytic activities by employing metal alloy catalysts. Such research effort has led us to find Pt3Co nanoparticles as an effective OER catalyst in Li-O-2 batteries. The superior catalytic activity was reflected in the substantially decreased overpotentials and improved cycling/rate performance compared to those of other catalysts. Density functional theory calculations suggested that the low OER overpotentials are associated with the reduced adsorption strength of LiO2 on the outermost Pt catalytic sites. Also, the alloy catalyst generates amorphous Li2O2 conformally coated around the catalyst and thus facilitates easier decomposition and higher reversibility. This investigation conveys an important message that understanding elementary reactions and surface charge engineering of air-catalysts are one of the most effective approaches in resolving the chronic sluggish charging kinetics in Li-O-2 batteries.

    Gene expression profiling of chicken primordial germ cell ESTs

    Get PDF
    BACKGROUND: Germ cells are the only cell type that can penetrate from one generation to next generation. At the early embryonic developmental stages, germ cells originally stem from primordial germ cells, and finally differentiate into functional gametes, sperm in male or oocyte in female, after sexual maturity. This study was conducted to investigate a large-scale expressed sequence tag (EST) analysis in chicken PGCs and compare the expression of the PGC ESTs with that of embryonic gonad. RESULTS: We constructed 10,851 ESTs from a chicken cDNA library of a collection of highly separated embryonic PGCs. After chimeric and problematic sequences were filtered out using the chicken genomic sequences, there were 5,093 resulting unique sequences consisting of 156 contigs and 4,937 singlets. Pearson chi-square tests of gene ontology terms in the 2nd level between PGC and embryonic gonad set showed no significance. However, digital gene expression profiling using the Audic's test showed that there were 2 genes expressed significantly with higher number of transcripts in PGCs compared with the embryonic gonads set. On the other hand, 17 genes in embryonic gonads were up-regulated higher than those in the PGC set. CONCLUSION: Our results in this study contribute to knowledge of mining novel transcripts and genes involved in germline cell proliferation and differentiation at the early embryonic stages

    Selective laser ablation of metal thin films using ultrashort pulses

    Full text link
    Selective thin-film removal is needed in many microfabrication processes such as 3-D patterning of optoelectronic devices and localized repairing of integrated circuits. Various wet or dry etching methods are available, but laser machining is a tool of green manufacturing as it can remove thin films by ablation without use of toxic chemicals. However, laser ablation causes thermal damage on neighboring patterns and underneath substrates, hindering its extensive use with high precision and integrity. Here, using ultrashort laser pulses of sub-picosecond duration, we demonstrate an ultrafast mechanism of laser ablation that leads to selective removal of a thin metal film with minimal damage on the substrate. The ultrafast laser ablation is accomplished with the insertion of a transition metal interlayer that offers high electron-phonon coupling to trigger vaporization in a picosecond timescale. This contained form of heat transfer permits lifting off the metal thin-film layer while blocking heat conduction to the substrate. Our ultrafast scheme of selective thin film removal is analytically validated using a two-temperature model of heat transfer between electrons and phonons in material. Further, experimental verification is made using 0.2 ps laser pulses by micropatterning metal films for various applications.Comment: 19 pages, 4 figures. This manuscript has been submitted to International Journal of Precision Engineering and Manufacturing-Green Technolog
    corecore