116 research outputs found
Robust model predictive kinematic tracking control with terminal region for wheeled robotic systems
This paper addresses the nonlinear model predictive control (MPC) for wheeled mobile robots (WMRs) under external disturbance. The decoupling technique is utilized based on the non-holonomic constraint description for separating the WMR model. This method is able to achieve the under-actuated kinematic sub-system without disturbance and fully-actuated dynamic sub-system in presence of disturbance. Thanks to the decoupling technique, the disturbance is lumped into dynamic sub-system. The novelty lies in that the MPC-based tracking control with fixed initial point guarantees the stability based on a new establishment of terminal region and equivalent terminal controller. The feasibility problem is demonstrated to lead the tracking problem using theoretical analysis. Moreover, the control structure is inserted more the robust nonlinear dynamic controller. The effectiveness and advantages of the proposed control scheme are verified by numerical simulations using Yamip tool
Multi parametric model predictive control based on laguerre model for permanent magnet linear synchronous motors
The permanent magnet linear motors are widely used in various industrial applications due to its advantages in comparisons with rotary motors such as mechanical durability and directly creating linear motions without gears or belts. The main difficulties of its control design are that the control performances include the tracking of position and velocity as well as guarantee limitations of the voltage control and its variation. In this work, a cascade control strategy including an inner and an outer loop is applied to synchronous linear motor. Particularly, an offline MPC controller based on MPP method and Laguerre model was proposed for inner loop and the outer controller was designed with the aid of nonlinear damping method. The numerical simulation was implemented to validate performance of the proposed controller under voltage input constraints
High-Gain Observer–Based Sliding Mode Control of Multimotor Drive Systems
Multimotor drive systems have been widely used in many modern industries. It is a nonlinear, multi-input, multi-output (MIMO) and strong-coupling complicated system, including the effect of friction, elastic, and backlash. The control law for this drive system much depends on the determining of the tension. However, it is hard to obtain this tension in practice by using a load cell or a pressure meter due to the accuracy of sensors or external disturbance. In order to solve this problem, a high-gain observer is proposed to estimate the state variables in this drive system, such as speeds and tension. An emerging proposed technique in the control law is the use of high-gain observers together with adaptive sliding mode control scheme to obtain a separation principle for the stabilization of whole system. The theory analysis and simulation results point out the good effectiveness of the proposed output feedback for the drive system
Thermoresistance of p-Type 4H–SiC Integrated MEMS Devices for High-Temperature Sensing
There is an increasing demand for the development and integration of multifunctional sensing modules into power electronic devices that can operate in high temperature environments. Here, the authors demonstrate the tunable thermoresistance of p‐type 4H–SiC for a wide temperature range from the room temperature to above 800 K with integrated flow sensing functionality into a single power electronic chip. The electrical resistance of p‐type 4H–SiC is found to exponentially decrease with increasing temperature to a threshold temperature of 536 K. The temperature coefficient of resistance (TCR) shows a large and negative value from −2100 to −7600 ppm K−1, corresponding to a thermal index of 625 K. From the threshold temperature of 536–846 K, the electrical resistance shows excellent linearity with a positive TCR value of 900 ppm K−1. The authors successfully demonstrate the integration of p–4H–SiC flow sensing functionality with a high sensitivity of 1.035 μA(m s−1)−0.5 mW−1. These insights in the electrical transport of p–4H–SiC aid to improve the performance of p–4H–SiC integrated temperature and flow sensing systems, as well as the design consideration and integration of thermal sensors into 4H–SiC power electronic systems operating at high temperatures of up to 846 K
Nano strain-amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects
This paper presents an innovative nano strain-amplifier employed to
significantly enhance the sensitivity of piezoresistive strain sensors.
Inspired from the dogbone structure, the nano strain-amplifier consists of a
nano thin frame released from the substrate, where nanowires were formed at the
centre of the frame. Analytical and numerical results indicated that a nano
strain-amplifier significantly increases the strain induced into a free
standing nanowire, resulting in a large change in their electrical conductance.
The proposed structure was demonstrated in p-type cubic silicon carbide
nanowires fabricated using a top down process. The experimental data showed
that the nano strain-amplifier can enhance the sensitivity of SiC strain
sensors at least 5.4 times larger than that of the conventional structures.
This result indicates the potential of the proposed strain-amplifier for
ultra-sensitive mechanical sensing applications.Comment: 4 pages, 5 figure
A rapid and cost-effective metallization technique for 3C-SiC MEMS using direct wire bonding
This paper presents a simple, rapid and cost-effective wire bonding technique for single crystalline silicon carbide (3C–SiC) MEMS devices. Utilizing direct ultrasonic wedge–wedge bonding, we have demonstrated for the first time the direct bonding of aluminum wires onto SiC films for the characterization of electronic devices without the requirement for any metal deposition and etching process. The bonded joints between the Al wires and the SiC surfaces showed a relatively strong adhesion force up to approximately 12.6–14.5 mN and excellent ohmic contact. The bonded wire can withstand high temperatures above 420 K, while maintaining a notable ohmic contact. As a proof of concept, a 3C–SiC strain sensor was demonstrated, where the sensing element was developed based on the piezoresistive effect in SiC and the electrical contact was formed by the proposed direct-bonding technique. The SiC strain sensor possesses high sensitivity to the applied mechanical strains, as well as exceptional repeatability. The work reported here indicates the potential of an extremely simple direct wire bonding method for SiC for MEMS and microelectronic applications
A hot-film air flow sensor for elevated temperatures
We report a novel packaging and experimental technique for characterizing thermal flow sensors at high temperatures. This paper first reports the fabrication of 3C-SiC (silicon carbide) on a glass substrate via anodic bonding, followed by the investigation of thermoresistive and Joule heating effects in the 3C-SiC nano-thin film heater. The high thermal coefficient of resistance of approximately −20 720 ppm/K at ambient temperature and −9287 ppm/K at 200 °C suggests the potential use of silicon carbide for thermal sensing applications in harsh environments. During the Joule heating test, a high-temperature epoxy and a brass metal sheet were utilized to establish the electric conduction between the metal electrodes and SiC heater inside a temperature oven. In addition, the metal wires from the sensor to the external circuitry were protected by a fiberglass insulating sheath to avoid short circuit. The Joule heating test ensured the stability of mechanical and Ohmic contacts at elevated temperatures. Using a hot-wire anemometer as a reference flow sensor, calibration tests were performed at 25 °C, 35 °C, and 45 °C. Then, the SiC hot-film sensor was characterized for a range of low air flow velocity, indicating a sensitivity of 5 mm−1 s. The air flow was established by driving a metal propeller connected to a DC motor and controlled by a microcontroller. The materials, metallization, and interconnects used in our flow sensor were robust and survived temperatures of around 200 °
Thermal flow sensors for harsh environments
Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application
Flexible and multifunctional electronics fabricated by a solvent-free and user-friendly method
Flexible and multifunctional electronic devices have been proven to show potential for various applications including human-motion detection and wearable thermal therapy. The key advantages of these systems are (1) highly stable, sensitive and fast-response devices, (2) fabrication of macroscale devices on flexible substrates, and (3) integrated (lab-on-chip) and multifunctional devices. However, their fabrication commonly requires toxic solvents, as well as time-consuming and complex processes. Here, we demonstrate the low-cost, rapid-prototyping and user-friendly fabrication of flexible transducers using recyclable, water-resistant poly(vinyl chloride) films as a substrate, and ubiquitously available pencil graphite as a functional layer without using any toxic solvents or additional catalysts. The flexible heaters showed good characteristics such as fast thermal response, good thermostability (low temperature coefficient of resistance) and low power consumption. The heaters with their capability of perceiving human motion were shown to be effective. The proof of concept of other functional devices such as vibration-based droplet sensors and drag-force air flow sensors was also demonstrated. Results from this study indicate that a wide range of electronic devices fabricated from the environmental-friendly material by this simple and user-friendly approach could be utilized for cost-effective, flexible and low power consuming thermal therapy, health monitoring systems and other real-time monitoring devices without using any toxic chemicals or advanced processes
Research antioxidant activity of chitooligosacchride by UV-VIS absorption spectrocopy
Chitosan with 80% degree of deacetylation was hydrolyzed by cellulase of Trichoderma viride to prepare chitooligosaccharides (COSs) by the fractionation of the COSs with ultrafiltration membrane. The antioxidant
activities of the COSs were clarified in this study by reducing power and free radical scavenging ability assay by UV-VIS absorption spectrum. The results show that the COS 1 (10,000-5,000 Da), COS 2 (5,000-3,000 Da), COS 3 (3,000-1,000 Da) and COS 4 (less than1,000 Da) segments have antioxidant properties.The antioxidant activitives of the COSs increased with the increment of concentration, and they also depended on molecular weight
- …