19 research outputs found

    Conditional deletion of LRRC8A in the brain reduces stroke damage independently of swelling-activated glutamate release

    Get PDF
    The ubiquitous volume-regulated anion channels (VRACs) facilitate cell volume control and contribute to many other physiological processes. Treatment with non-specific VRAC blockers or brain-specific deletion of the essential VRAC subunit LRRC8A is highly protective in rodent models of stroke. Here, we tested the widely accepted idea that the harmful effects of VRACs are mediated by release of the excitatory neurotransmitter glutamate. We produced conditional LRRC8A knockout either exclusively in astrocytes or in the majority of brain cells. Genetically modified mice were subjected to an experimental stroke (middle cerebral artery occlusion). The astrocytic LRRC8A knockout yielded no protection. Conversely, the brain-wide LRRC8A deletion strongly reduced cerebral infarction in both heterozygous (Het) and full KO mice. Yet, despite identical protection, Het mice had full swelling-activated glutamate release, whereas KO animals showed its virtual absence. These findings suggest that LRRC8A contributes to ischemic brain injury via a mechanism other than VRAC-mediated glutamate release

    Short Communication Opioid Analgesia in P450 Gene Cluster Knockout Mice: A Search for Analgesia-Relevant Isoforms

    Get PDF
    Number of references: 28 Number of words in Abstract: 240 Number of words in Introduction: 49

    Opioid Analgesia in P450 Gene Cluster Knockout Mice: A Search for Analgesia-Relevant Isoforms

    No full text

    High-Affinity Binding of [ 3

    No full text

    Inhibition of brain [(3)H]cimetidine binding by improgan-like antinociceptive drugs

    No full text
    [(3)H]cimetidine, a radiolabeled histamine H(2) receptor antagonist, binds with high affinity to an unknown hemoprotein in the brain which is not the histamine H(2) receptor. Improgan, a close chemical congener of cimetidine, is a highly effective pain-relieving drug following CNS administration, yet its mechanism of action remains unknown. To test the hypothesis that the [(3)H]cimetidine-binding site is the improgan antinociceptive target, improgan, cimetidine, and 8 other chemical congeners were studied as potential inhibitors of [(3)H]cimetidine binding in membrane fractions from the rat brain. All compounds produced a concentration-dependent inhibition of [(3)H]cimetidine binding over a 500-fold range of potencies (K(i) values were 14.5 to >8000nM). However, antinociceptive potencies in rats did not significantly correlate with [(3)H]cimetidine-binding affinities (r=0.018, p=0.97, n=10). These results suggest that the [(3)H]cimetidine-binding site is not the analgesic target for improgan-like drugs
    corecore