30 research outputs found

    Genetic differences in red cell osmotic fragility: analysis in allophenic mice

    No full text

    Yeast Rmi1/Nce4 Controls Genome Stability as a Subunit of the Sgs1-Top3 Complex

    No full text
    Genome stability requires a set of RecQ-Top3 DNA helicase-topoisomerase complexes whose sole budding yeast homolog is encoded by SGS1-TOP3. RMI1/NCE4 was identified as a potential intermediate in the SGS1-TOP3 pathway, based on the observation that strains lacking any one of these genes require MUS81 and MMS4 for viability. This idea was tested by confirming that sgs1 and rmi1 mutants display the same spectrum of synthetic lethal interactions, including the requirements for SLX1, SLX4, SLX5, and SLX8, and by demonstrating that rmi1 mus81 synthetic lethality is dependent on homologous recombination. On their own, mutations in RMI1 result in phenotypes that mimic those of sgs1 or top3 strains including slow growth, hyperrecombination, DNA damage sensitivity, and reduced sporulation. And like top3 strains, most rmi1 phenotypes are suppressed by mutations in SGS1. We show that Rmi1 forms a heteromeric complex with Sgs1-Top3 in yeast and that these proteins interact directly in a recombinant system. The Rmi1-Top3 complex is stable in the absence of the Sgs1 helicase, but the loss of either Rmi1 or Top3 in yeast compromises its partner's interaction with Sgs1. Biochemical studies demonstrate that recombinant Rmi1 is a structure-specific DNA binding protein with a preference for cruciform structures. We propose that the DNA binding specificity of Rmi1 plays a role in targeting Sgs1-Top3 to appropriate substrates

    Site-specific initiation of DNA replication in metazoan chromosomes and the role of nuclear organization

    No full text
    We have asked whether or not Xenopus eggs or egg extracts, which have previously been shown to replicate essentially any DNA molecule, will preferentially utilize a known mammalian OBR. Our results reveal that Xenopus egg extracts can preferentially initiate DNA replication at sites chosen in vivo by the hamster cell, provided that the DNA substrate is presented to the extract in the form of a nucleus rather than bare DNA. Thus, site-specific initiation of DNA replication in metazoan cell chromosomes appears to be determined by nuclear organization as well as DNA sequence. We have also considered whether or not BPV, which was previously reported to regulate its copy number through negative as well as positive cis-acting sequences, provides a suitable paradigm for cellular origins. The BPV genome was found to contain cis-acting sequences that can suppress DNA replication driven by a lytic virus such as PyV. However, this suppression did not require any BPV protein, did not limit PyV origin activity to one initiation event per S phase, and did not affect BPV origin activity. These results, together with data from other laboratories, strongly suggest that BPV is simply a slow-replicating version of SV40 and PyV and therefore is not an appropriate model to explain how initiation of cellular DNA replication is limited to once per cell cycle

    Direct identification of sickle cell anemia by blot hybridization.

    No full text
    corecore