6 research outputs found

    Whole-Blood Transcriptional Signatures Composed of Erythropoietic and NRF2-Regulated Genes Differ Between Cerebral Malaria and Severe Malarial Anemia

    No full text
    Background Among the severe malaria syndromes, severe malarial anemia (SMA) is the most common, whereas cerebral malaria (CM) is the most lethal. However, the mechanisms that lead to CM and SMA are unclear. Methods We compared transcriptomic profiles of whole blood obtained from Ugandan children with acute CM (n = 17) or SMA (n = 17) and community children without Plasmodium falciparum infection (n = 12) and determined the relationships among gene expression, hematological indices, and relevant plasma biomarkers. Results Both CM and SMA demonstrated predominantly upregulated enrichment of dendritic cell activation, inflammatory/Toll-like receptor/chemokines, and monocyte modules, but downregulated enrichment of lymphocyte modules. Nuclear factor, erythroid 2 like 2 (Nrf2)-regulated genes were overexpressed in children with SMA relative to CM, with the highest expression in children with both SMA and sickle cell disease (HbSS), corresponding with elevated plasma heme oxygenase-1 in this group. Erythroid and reticulocyte-specific signatures were markedly decreased in CM relative to SMA despite higher hemoglobin levels and appropriate increases in erythropoietin. Viral sensing/interferon-regulatory factor 2 module expression and plasma interferon-inducible protein-10/CXCL10 negatively correlated with reticulocyte-specific signatures. Conclusions Compared with SMA, CM is associated with downregulation of Nrf2-related and erythropoiesis signatures by whole-blood transcriptomics. Future studies are needed to confirm these findings and assess pathways that may be amenable to interventions to ameliorate CM and SMA

    Analysis of the Tumor Immune Microenvironment (TIME) in Clear Cell Renal Cell Carcinoma (ccRCC) Reveals an M0 Macrophage-Enriched Subtype: An Exploration of Prognostic and Biological Characteristics of This Immune Phenotype

    No full text
    There is a need to optimize the treatment of clear cell renal cell carcinoma (ccRCC) patients at high recurrence risk after nephrectomy. We sought to elucidate the tumor immune microenvironment (TIME) of localized ccRCC and understand the prognostic and predictive characteristics of certain features. The discovery cohort was clinically localized patients in the TCGA-Kidney Renal Clear Cell Carcinoma (KIRC) project (n = 382). We identified an M0 macrophage-enriched cluster (n = 25) in the TCGA-KIRC cohort. This cluster’s median progression-free survival (PFS) and overall survival (OS) were 40.4 and 45.3 months, respectively, but this was not reached in the others (p = 0.0003 and n = 9) with shorter PFS (p = 0.0006) was also identified in the Clinical Proteomics Tumor Analysis Consortium (CPTAC) cohort (n = 94). Through this characterization of the TIME in ccRCC, a cluster of patients defined by enrichment in M0 macrophages was identified that demonstrated poor prognosis and lower predicted ICB response. Pending further validation, this signature can identify localized ccRCC patients at high risk of recurrence after nephrectomy and who may require therapeutic approaches beyond ICB monotherapy

    Deciphering host immunity to malaria using systems immunology

    No full text
    A century of conceptual and technological advances in infectious disease research has changed the face of medicine. However, there remains a lack of effective interventions and a poor understanding of host immunity to the most significant and complex pathogens, including malaria. The development of successful interventions against such intractable diseases requires a comprehensive understanding of host-pathogen immune responses. A major advance of the past decade has been a paradigm switch in thinking from the contemporary reductionist (gene-by-gene or protein-by-protein) view to a more holistic (whole organism) view. Also, a recognition that host-pathogen immunity is composed of complex, dynamic interactions of cellular and molecular components and networks that cannot be represented by any individual component in isolation. Systems immunology integrates the field of immunology with omics technologies and computational sciences to comprehensively interrogate the immune response at a systems level. Herein, we describe the system immunology toolkit and report recent studies deploying systems-level approaches in the context of natural exposure to malaria or controlled human malaria infection. We contribute our perspective on the potential of systems immunity for the rational design and development of effective interventions to improve global public health

    Integrative multi-region molecular profiling of primary prostate cancer in men with synchronous lymph node metastasis

    No full text
    Abstract Localized prostate cancer is frequently composed of multiple spatially distinct tumors with significant inter- and intra-tumoral molecular heterogeneity. This genomic diversity gives rise to many competing clones that may drive the biological trajectory of the disease. Previous large-scale sequencing efforts have focused on the evolutionary process in metastatic prostate cancer, revealing a potential clonal progression to castration resistance. However, the clonal origin of synchronous lymph node (LN) metastases in primary disease is still unknown. Here, we perform multi-region, targeted next generation sequencing and construct phylogenetic trees in men with prostate cancer with synchronous LN metastasis to better define the pathologic and molecular features of primary disease most likely to spread to the LNs. Collectively, we demonstrate that a combination of histopathologic and molecular factors, including tumor grade, presence of extra-prostatic extension, cellular morphology, and oncogenic genomic alterations are associated with synchronous LN metastasis
    corecore