129 research outputs found

    An Empirical Charge Transfer Potential with Correct Dissociation Limits

    Full text link
    The empirical valence bond (EVB) method [J. Chem. Phys. 52, 1262 (1970)] has always embodied charge transfer processes. The mechanism of that behavior is examined here and recast for use as a new empirical potential energy surface for large-scale simulations. A two-state model is explored. The main features of the model are: (1) Explicit decomposition of the total system electron density is invoked; (2) The charge is defined through the density decomposition into constituent contributions; (3) The charge transfer behavior is controlled through the resonance energy matrix elements which cannot be ignored; and (4) A reference-state approach, similar in spirit to the EVB method, is used to define the resonance state energy contributions in terms of "knowable" quantities. With equal validity, the new potential energy can be expressed as a nonthermal ensemble average with a nonlinear but analytical charge dependence in the occupation number. Dissociation to neutral species for a gas-phase process is preserved. A variant of constrained search density functional theory is advocated as the preferred way to define an energy for a given charge.Comment: Submitted to J. Chem. Phys. 11/12/03. 14 pages, 8 figure

    Relativistic Klein-Gordon charge effects by information-theoretic measures

    Full text link
    The charge spreading of ground and excited states of Klein-Gordon particles moving in a Coulomb potential is quantitatively analyzed by means of the ordinary moments and the Heisenberg measure as well as by use of the most relevant information-theoretic measures of global (Shannon entropic power) and local (Fisher's information) types. The dependence of these complementary quantities on the nuclear charge Z and the quantum numbers characterizing the physical states is carefully discussed. The comparison of the relativistic Klein-Gordon and non-relativistic Schrodinger values is made. The non-relativistic limits at large principal quantum number n and for small values of Z are also reached.Comment: Accepted in New Journal of Physic

    Current-density functional for disordered systems

    Get PDF
    The effective action for the current and density is shown to satisfy an evolution equation, the functional generalization of Callan-Symanzik equation. The solution describes the dependence of the one-particle irreducible vertex functions on the strength of the quenched disorder and the annealed Coulomb interaction. The result is non-perturbative, no small parameter is assumed. The a.c. conductivity is obtained by the numerical solution of the evolution equation on finite lattices in the absence of the Coulomb interaction. The static limit is performed and the conductivity is found to be vanishing beyond a certain threshold of the impurity strength.Comment: final version, 28 pages, 17 figures, to appear in Phys. Rev.

    Nature of the 5f states in actinide metals

    Full text link
    Actinide elements produce a plethora of interesting physical behaviors due to the 5f states. This review compiles and analyzes progress in understanding of the electronic and magnetic structure of the 5f states in actinide metals. Particular interest is given to electron energy-loss spectroscopy and many-electron atomic spectral calculations, since there is now an appreciable library of core d -> valence f transitions for Th, U, Np, Pu, Am, and Cm. These results are interwoven and discussed against published experimental data, such as x-ray photoemission and absorption spectroscopy, transport measurements, and electron, x-ray, and neutron diffraction, as well as theoretical results, such as density-functional theory and dynamical mean-field theory.Comment: 136 pages in Word format, 29 Figures; Accepted to Reviews of Modern Physic

    Charge Sensitivity/Bond-Order Analysis of Reactivity Trends in Allyl−[MoO 3

    No full text
    • 

    corecore