154 research outputs found

    Quantum coherent biomolecular energy transfer with spatially correlated fluctuations

    Full text link
    We show that the quantum coherent transfer of excitations between biomolecular chromophores is strongly influenced by spatial correlations of the environmental fluctuations. The latter are due either to propagating environmental modes or to local fluctuations with a finite localization length. A simple toy model of a single donor-acceptor pair with spatially separated chromophore sites allows to investigate the influence of these spatial correlations on the quantum coherent excitation transfer. The sound velocity of the solvent determines the wave lengths of the environmental modes, which, in turn, has to be compared to the spatial distance of the chromophore sites. When the wave length exceeds the distance between donor and acceptor site, we find strong suppression of decoherence. In addition, we consider two spatially separated donor-acceptor pairs under the influence of propagating environmental modes. Depending on their wave lengths fixed by the sound velocity of the solvent material, the spatial range of correlations may extend over typical interpair distances, which can lead to an increase of the decohering influence of the solvent. Surprisingly, this effect is counteracted by increasing temperature

    Ultraslow quantum dynamics in a sub-Ohmic heat bath

    Full text link
    We show that the low-frequency modes of a sub-Ohmic bosonic heat bath generate an effective dynamical asymmetry for an intrinsically symmetric quantum spin -1/2. An initially fully polarized spin first decays towards a quasiequilibrium determined by the dynamical asymmetry, thereby showing coherent damped oscillations on the (fast) time scale of the spin splitting. On top of this, the dynamical asymmetry itself decays on an ultraslow time scale and vanishes asymptotically since the global equilibrium phase is symmetric. We quantitatively study the nature of the initial fast decay to the quasiequilibrium and discuss the features of ultraslow dynamics of the quasiequilibrium itself. The dynamical asymmetry is more pronounced for smaller values of the sub-Ohmic exponent and for lower temperatures, which emphasizes the quantum many-body nature of the effect. The symmetry breaking is related to the dynamic crossover between coherent and overdamped relaxation of the spin polarization and is not connected to the localization quantum phase transition. In addition to this delocalized phase, we identify a novel phase which is characterized by damped coherent oscillations in the localized phase. This allows for a sketch of the zero-temperature phase diagram of the sub-Ohmic spin-boson model with four distinct phases.Comment: published version (minor changes), 8 pages, 5 figure

    Nonequilibrium quantum fluctuation relations for harmonic systems in nonthermal environments

    Full text link
    We formulate exact generalized nonequilibrium fluctuation relations for the quantum mechanical harmonic oscillator coupled to multiple harmonic baths. Each of the different baths is prepared in its own individual (in general nonthermal) state. Starting from the exact solution for the oscillator dynamics we study fluctuations of the oscillator position as well as of the energy current through the oscillator under general nonequilibrium conditions. In particular, we formulate a fluctuation-dissipation relation for the oscillator position autocorrelation function that generalizes the standard result for the case of a single bath at thermal equilibrium. Moreover, we show that the generating function for the position operator fullfills a generalized Gallavotti-Cohen-like relation. For the energy transfer through the oscillator, we determine the average energy current together with the current fluctuations. Finally, we discuss the generalization of the cumulant generating function for the energy transfer to nonthermal bath preparations.Comment: 21 page

    Elastic response of [111]-tunneling impurities

    Full text link
    We study the dynamic response of a [111] quantum impurity, such as lithium or cyanide in alkali halides, with respect to an external field coupling to the elastic quadrupole moment. Because of the particular level structure of a eight-state system on a cubic site, the elastic response function shows a biexponential relaxation feature and a van Vleck type contribution with a resonance frequency that is twice the tunnel frequency Δ/\Delta/\hbar. This basically differs from the dielectric response that does not show relaxation. Moreover, we show that the elastic response of a [111] impurity cannot be reduced to that of a two-level system. In the experimental part, we report on recent sound velocity and internal friction measurements on KCl doped with cyanide at various concentrations. At low doping (45 ppm) we find the dynamics of a single [111] impurity, whereas at higher concentrations (4700 ppm) the elastic response rather indicates strongly correlated defects. Our theoretical model provides a good description of the temperature dependence of δv/v\delta v/v and Q1Q^{-1} at low doping, in particular the relaxation peaks, the absolute values of the amplitude, and the resonant contributions. From our fits we obtain the value of the elastic deformation potential γt=0.192\gamma_t=0.192 eV.Comment: 19 pages, 5 figure

    Laser Control of Dissipative Two-Exciton Dynamics in Molecular Aggregates

    Full text link
    There are two types of two-photon transitions in molecular aggregates, that is, non-local excitations of two monomers and local double excitations to some higher excited intra-monomer electronic state. As a consequence of the inter-monomer Coulomb interaction these different excitation states are coupled to each other. Higher excited intra-monomer states are rather short-lived due to efficient internal conversion of electronic into vibrational energy. Combining both processes leads to the annihilation of an electronic excitation state, which is a major loss channel for establishing high excitation densities in molecular aggregates. Applying theoretical pulse optimization techniques to a Frenkel exciton model it is shown that the dynamics of two-exciton states in linear aggregates (dimer to tetramer) can be influenced by ultrafast shaped laser pulses. In particular, it is studied to what extent the decay of the two-exciton population by inter-band transitions can be transiently suppressed. Intra-band dynamics is described by a dissipative hierarchy equation approach, which takes into account strong exciton-vibrational coupling in the non-Markovian regime.Comment: revised version, fig. 8 ne

    Competition between relaxation and external driving in the dissipative Landau-Zener problem

    Full text link
    We study Landau-Zener transitions in a dissipative environment by means of the quasiadiabatic propagator path-integral scheme. It allows to obtain numerically exact results for the full range of the involved parameters. We discover a nonmonotonic dependence of the Landau-Zener transition probability on the sweep velocity which is explained in terms of a simple physical picture. This feature results from a nontrivial competition between relaxation processes and the external sweep and is not captured by perturbative approaches. In addition to the Landau-Zener transition probability, we study the excitation survival probability and also provide a qualitative understanding of the involved competition of time scales.Comment: 9 pages, 15 figure
    corecore