19 research outputs found

    Re-expression of IGF-II is important for beta cell regeneration in adult mice

    Get PDF
    Background The key factors which support re-expansion of beta cell numbers after injury are largely unknown. Insulin-like growth factor II (IGF-II) plays a critical role in supporting cell division and differentiation during ontogeny but its role in the adult is not known. In this study we investigated the effect of IGF-II on beta cell regeneration. Methodology/Principal Findings We employed an in vivo model of ‘switchable’ c-Myc-induced beta cell ablation, pIns-c-MycERTAM, in which 90% of beta cells are lost following 11 days of c-Myc (Myc) activation in vivo. Importantly, such ablation is normally followed by beta cell regeneration once Myc is deactivated, enabling functional studies of beta cell regeneration in vivo. IGF-II was shown to be re-expressed in the adult pancreas of pIns-c-MycERTAM/IGF-II+/+ (MIG) mice, following beta cell injury. As expected in the presence of IGF-II beta cell mass and numbers recover rapidly after ablation. In contrast, in pIns-c-MycERTAM/IGF-II+/− (MIGKO) mice, which express no IGF-II, recovery of beta cell mass and numbers were delayed and impaired. Despite failure of beta cell number increase, MIGKO mice recovered from hyperglycaemia, although this was delayed. Conclusions/Significance Our results demonstrate that beta cell regeneration in adult mice depends on re-expression of IGF-II, and supports the utility of using such ablation-recovery models for identifying other potential factors critical for underpinning successful beta cell regeneration in vivo. The potential therapeutic benefits of manipulating the IGF-II signaling systems merit further exploration

    Identification of epidermal Pdx1 expression discloses different roles of Notch1 and Notch2 in murine KrasG12D-induced skin carcinogenesis in vivo

    Get PDF
    Background The Ras and Notch signaling pathways are frequently activated during development to control many diverse cellular processes and are often dysregulated during tumorigenesis. To study the role of Notch and oncogenic Kras signaling in a progenitor cell population, Pdx1-Cre mice were utilized to generate conditional oncogenic KrasG12D mice with ablation of Notch1 and/or Notch2. Methodology/Principal Findings Surprisingly, mice with activated KrasG12D and Notch1 but not Notch2 ablation developed skin papillomas progressing to squamous cell carcinoma providing evidence for Pdx1 expression in the skin. Immunostaining and lineage tracing experiments indicate that PDX1 is present predominantly in the suprabasal layers of the epidermis and rarely in the basal layer. Further analysis of keratinocytes in vitro revealed differentiation-dependent expression of PDX1 in terminally differentiated keratinocytes. PDX1 expression was also increased during wound healing. Further analysis revealed that loss of Notch1 but not Notch2 is critical for skin tumor development. Reasons for this include distinct Notch expression with Notch1 in all layers and Notch2 in the suprabasal layer as well as distinctive p21 and β-catenin signaling inhibition capabilities. Conclusions/Significance Our results provide strong evidence for epidermal expression of Pdx1 as of yet not identified function. In addition, this finding may be relevant for research using Pdx1-Cre transgenic strains. Additionally, our study confirms distinctive expression and functions of Notch1 and Notch2 in the skin supporting the importance of careful dissection of the contribution of individual Notch receptors

    Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma

    No full text
    Pancreatic cancer is one of the most fatal malignancies lacking effective therapies. Notch signaling is a key regulator of cell fate specification and pancreatic cancer development; however, the role of individual Notch receptors and downstream signaling is largely unknown. Here, we show that Notch2 is predominantly expressed in ductal cells and pancreatic intraepithelial neoplasia (PanIN) lesions. Using genetically engineered mice, we demonstrate the effect of conditional Notch receptor ablation in Kras(G12D)-driven pancreatic carcinogenesis. Deficiency of Notch2 but not Notch1 stops PanIN progression, prolongs survival, and leads to a phenotypical switch toward anaplastic pancreatic cancer with epithelial-mesenchymal transition. By expression profiling, we identified increased Myc signaling regulated by Notch2 during tumor development, placing Notch2 as a central regulator of PanIN progression and malignant transformation. Our study supports the concept of distinctive roles of individual Notch receptors in cancer development

    Intraperitoneal glucose tolerance test.

    No full text
    <p>Islet functional study was performed by taking IP glucose tolerance test (IPGTT). Mice were starved overnight before intraperitoneal injection of glucose at 1.5 mg/g of animal body weight. <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0043623#s2" target="_blank">Results</a> of IPGTT showed both stains did not recover 3 weeks after Myc deactivation, comparing to their wildtype litter mates (A). After 3 month recovery both strains were able to maintain normal blood glucose (B).</p

    Blood glucose homeostasis.

    No full text
    <p>Myc activation was induced for 11 days in mice following which Myc was deactivated for up to 3 months. Blood glucose levels (Mean ± SEM) were measured in MIG mice n = 3 and MIGKO mice n = 3 during this period (A). Both strains developed hyperglyceamia after Myc activation and MIGKO mice showed a delay of recovery from hyperglycemia at day 4 following Myc deactivation. After 3 months both strains were able to return to normal blood glucose level.</p

    Loss of IGF-II affects recovery of beta cell numbers following beta cell ablation.

    No full text
    <p>Beta cell number was counted in up to 200 islets from five pancreas levels per mouse (n = 3) by software co-developed with our collaborators <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0043623#pone.0043623-Herold1" target="_blank">[30]</a>. <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0043623#s2" target="_blank">Results</a> showed in MIG mice beta cell number increased by 60% at 4 days Myc deactivation, whereas in MIGKO mice the beta cell mass was barely changed. Consistently with our previous observation in beta cell mass after 3 months recovery, both MIG and MIGKO mice achieved 3- to 4-fold increase of beta cell numbers.</p

    IGF-II re-expression in MIG mice after brief Myc activation.

    No full text
    <p>Total pancreas RNA was extracted from pIns-c-MycER<sup>TAM</sup>/IGF-II<sup>+/+</sup> (MIG) and pIns-c-MycER<sup>TAM</sup>/IGF-II<sup>+/−</sup> (MIGKO) mice at 24 hr and 48 hr following Myc activation to induce beta cell ablation (n = 3). RT-PCR data (A) shows the amplified products in MIG mice after 24 hr (1) and 48 hr (3) of Myc activation in the target size of 357 bp. No amplified product was found in MIGKO mice at 24 hr (2) and 48 hr (4) of Myc activation by comparing to the positive control (WT mouse E17.5 placenta RNA) (0). Quantitative RT-PCR was performed and validated the RT-PCR results. IGF-II mRNA was expressed 5-fold higher in MIG mice after brief Myc activation but not in MIGKO mice nor in negative controls (B).</p

    Loss of IGF-II impedes recovery of beta cell mass following beta cell ablation.

    No full text
    <p>For each individual, beta cell mass was calculated as cross sectional area of insulin immunoreactivity divided by total sectional area for at least 5 levels (n = 3). <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0043623#s2" target="_blank">Results</a> showed in MIG mice beta cell mass increased 2-fold at 4 days Myc deactivation (p = 0.0106), whereas in MIGKO mice the beta cell mass was largely unchanged. After 3 months recovery the beta cell mass increased 6-fold in MIG mice and in MIGKO mice the increase was 5-fold.</p

    Glucagon positive cell cluster in MIG mice after 3 months Myc deactivation.

    No full text
    <p>In MIG mice after 3 months of recovery, clusters of glucagon positive cells separate from islets were observed. This might be new islets forming or possible clusters of alpha cells which might then further differentiate into beta cells. Such clusters were not seen in MIGKO mice or control mice pre-ablation.</p
    corecore