170 research outputs found

    Deriving bases for Abelian functions

    Full text link
    We present a new method to explicitly define Abelian functions associated with algebraic curves, for the purpose of finding bases for the relevant vector spaces of such functions. We demonstrate the procedure with the functions associated with a trigonal curve of genus four. The main motivation for the construction of such bases is that it allows systematic methods for the derivation of the addition formulae and differential equations satisfied by the functions. We present a new 3-term 2-variable addition formulae and a complete set of differential equations to generalise the classic Weierstrass identities for the case of the trigonal curve of genus four.Comment: 35page

    Mixing of Ground States in Vertex Models

    Get PDF
    We consider the analogue of the 6-vertex model constructed from alternating spin n/2 and spin m/2 lines, where 1n<m1\leq n<m. We identify the transfer matrix and the space on which it acts in terms of the representation theory of Uq(sl2)U_q(sl_2). We diagonalise the transfer matrix and compute the S-matrix. We give a trace formula for local correlation functions. When n=1, the 1-point function of a spin m/2 local variable for the alternating lattice with a particular ground state is given as a linear combination of the 1-point functions of the pure spin m/2 model with different ground states. The mixing ratios are calculated exactly and are expressed in terms of irreducible characters of Uq(sl2)U_q(sl_2) and the deformed Virasoro algebra.Comment: 12 pages, LaTeX, typos correcte

    Exact form factors in integrable quantum field theories: the sine-Gordon model (II)

    Get PDF
    A general model independent approach using the `off-shell Bethe Ansatz' is presented to obtain an integral representation of generalized form factors. The general techniques are applied to the quantum sine-Gordon model alias the massive Thirring model. Exact expressions of all matrix elements are obtained for several local operators. In particular soliton form factors of charge-less operators as for example all higher currents are investigated. It turns out that the various local operators correspond to specific scalar functions called p-functions. The identification of the local operators is performed. In particular the exact results are checked with Feynman graph expansion and full agreement is found. Furthermore all eigenvalues of the infinitely many conserved charges are calculated and the results agree with what is expected from the classical case. Within the frame work of integrable quantum field theories a general model independent `crossing' formula is derived. Furthermore the `bound state intertwiners' are introduced and the bound state form factors are investigated. The general results are again applied to the sine-Gordon model. The integrations are performed and in particular for the lowest breathers a simple formula for generalized form factors is obtained.Comment: LaTeX, 53 pages, Corrected typo

    A generalization of the q-Saalschutz sum and the Burge transform

    Full text link
    A generalization of the q-(Pfaff)-Saalschutz summation formula is proved. This implies a generalization of the Burge transform, resulting in an additional dimension of the ``Burge tree''. Limiting cases of our summation formula imply the (higher-level) Bailey lemma, provide a new decomposition of the q-multinomial coefficients, and can be used to prove the Lepowsky and Primc formula for the A_1^{(1)} string functions.Comment: 18 pages, AMSLaTe

    Hidden Grassmann structure in the XXZ model V: sine-Gordon model

    Full text link
    We study one-point functions of the sine-Gordon model on a cylinder. Our approach is based on a fermionic description of the space of descendent fields, developed in our previous works for conformal field theory and the sine-Gordon model on the plane. In the present paper we make an essential addition by giving a connection between various primary fields in terms of yet another kind of fermions. The one-point functions of primary fields and descendants are expressed in terms of a single function defined via the data from the thermodynamic Bethe Ansatz equations.Comment: 36 pages. Some corrections are done in latest version, especially in the subsection 10.

    The nested SU(N) off-shell Bethe ansatz and exact form factors

    Get PDF
    The form factor equations are solved for an SU(N) invariant S-matrix under the assumption that the anti-particle is identified with the bound state of N-1 particles. The solution is obtained explicitly in terms of the nested off-shell Bethe ansatz where the contribution from each level is written in terms of multiple contour integrals.Comment: This work is dedicated to the 75th anniversary of H. Bethe's foundational work on the Heisenberg chai

    Third Neighbor Correlators of Spin-1/2 Heisenberg Antiferromagnet

    Full text link
    We exactly evaluate the third neighbor correlator and all the possible non-zero correlators <S^{alpha}_j S^{beta}_{j+1} S^{gamma}_{j+2} S^{delta}_{j+3}> of the spin-1/2 Heisenberg XXXXXX antiferromagnet in the ground state without magnetic field. All the correlators are expressed in terms of certain combinations of logarithm ln2, the Riemann zeta function zeta(3), zeta(5) with rational coefficients. The results accurately coincide with the numerical ones obtained by the density-matrix renormalization group method and the numerical diagonalization.Comment: 4 page

    Abelian functions associated with a cyclic tetragonal curve of genus six

    Get PDF
    We develop the theory of Abelian functions defined using a tetragonal curve of genus six, discussing in detail the cyclic curve y^4 = x^5 + λ[4]x^4 + λ[3]x^3 + λ[2]x^2 + λ[1]x + λ[0]. We construct Abelian functions using the multivariate sigma-function associated with the curve, generalizing the theory of theWeierstrass℘-function. We demonstrate that such functions can give a solution to the KP-equation, outlining how a general class of solutions could be generated using a wider class of curves. We also present the associated partial differential equations satisfied by the functions, the solution of the Jacobi inversion problem, a power series expansion for σ(u) and a new addition formula

    Generalised Elliptic Functions

    Full text link
    We consider multiply periodic functions, sometimes called Abelian functions, defined with respect to the period matrices associated with classes of algebraic curves. We realise them as generalisations of the Weierstras P-function using two different approaches. These functions arise naturally as solutions to some of the important equations of mathematical physics and their differential equations, addition formulae, and applications have all been recent topics of study. The first approach discussed sees the functions defined as logarithmic derivatives of the sigma-function, a modified Riemann theta-function. We can make use of known properties of the sigma function to derive power series expansions and in turn the properties mentioned above. This approach has been extended to a wide range of non hyperelliptic and higher genus curves and an overview of recent results is given. The second approach defines the functions algebraically, after first modifying the curve into its equivariant form. This approach allows the use of representation theory to derive a range of results at lower computational cost. We discuss the development of this theory for hyperelliptic curves and how it may be extended in the future.Comment: 16 page
    corecore