26 research outputs found

    Semaphorin 3F and Netrin-1: The Novel Function as a Regulator of Tumor Microenvironment

    Get PDF
    Axon guidance molecules play an important role in regulating proper neuronal networking during neuronal development. They also have non-neuronal properties, which include angiogenesis, inflammation, and tumor development. Semaphorin 3F (SEMA3F), a member of the class 3 semaphorins, was initially identified as an axon guidance factor, that repels axons and collapses growth cones. However, SEMA3F has similar effects on endothelial cells (ECs) and tumor cells. In this review, we discuss the novel molecular mechanisms underlying SEMA3F activity in vascular and tumor biology. Recent evidence suggests that SEMA3F functions as a PI3K-Akt-mTOR inhibitor in mammalian cells, including T cells, ECs, and tumor cells. Therefore, SEMA3F may have broad therapeutic implications. We also discuss the key role of axon guidance molecules as regulators of the tumor microenvironment. Netrin-1, a chemoattractant factor in the neuronal system, promotes tumor progression by enhancing angiogenesis and metastasis. Moreover, our recent studies demonstrate that netrin-1/neogenin interactions augment CD4+ T cell chemokinesis and elicit pro-inflammatory responses, suggesting that netrin-1 plays a key role in modulating the function of a tumor and its surrounding cells in the tumor microenvironment. Overall, this review focuses on SEMA3F and netrin-1 signaling mechanisms to understand the diverse biological functions of axon guidance molecules

    Functionally confirmed compound heterozygous ADAM17 missense loss-of-function variants cause neonatal inflammatory skin and bowel disease 1

    Get PDF
    A disintegrin and metalloprotease 17 (ADAM17) is the major sheddase that processes more than 80 substrates, including tumour necrosis factor-α (TNFα). The homozygous genetic deficiency of ADAM17 causing a complete loss of ADAM17 expression was reported to be linked to neonatal inflammatory skin and bowel disease 1 (NISBD1). Here we report for the first time, a family with NISBD1 caused by functionally confirmed compound heterozygous missense variants of ADAM17, namely c.1699T>C (p.Cys567Arg) and c.1799G>A (p.Cys600Tyr). Both variants were detected in two siblings with clinical features of NISBD1, such as erythroderma with exudate in whole body, recurrent skin infection and sepsis and prolonged diarrhoea. In a cell-based assay using Adam10/17 double-knockout mouse embryonic fibroblasts (Adam10/17−/− mEFs) exogenously expressing each of these mutants, phorbol 12-myristate 13-acetate-stimulated shedding was strongly reduced compared with wild-type ADAM17. Thus, in vitro functional assays demonstrated that both missense variants cause the loss-of-function of ADAM17, resulting in the development of NISBD1. Our study further expands the spectrum of genetic pathology underlying ADAM17 in NISBD1 and establishes functional assay systems for its missense variants

    Novel function of axon guidance molecule as a regulator of tumor microenvironment

    No full text

    Glucose Transporter 1‐Positive Endothelial Cells in Infantile Hemangioma Exhibit Features of Facultative Stem Cells

    No full text
    Endothelial glucose transporter 1 (GLUT1) is a definitive and diagnostic marker for infantile hemangioma (IH), a vascular tumor of infancy. To date, GLUT1-positive endothelial cells in IH have not been quantified nor directly isolated and studied. We isolated GLUT1-positive and GLUT1-negative endothelial cells from IH specimens and characterized their proliferation, differentiation, and response to propranolol, a first-line therapy for IH, and to rapamycin, an mTOR pathway inhibitor used to treat an increasingly wide array of proliferative disorders. Although freshly isolated GLUT1-positive cells, selected using anti-GLUT1 magnetic beads, expressed endothelial markers CD31, VE-Cadherin, and vascular endothelial growth factor receptor 2, they converted to a mesenchymal phenotype after 3 weeks in culture. In contrast, GLUT1-negative endothelial cells exhibited a stable endothelial phenotype in vitro. GLUT1-selected cells were clonogenic when plated as single cells and could be induced to redifferentiate into endothelial cells, or into pericytes/smooth muscle cells or into adipocytes, indicating a stem cell-like phenotype. These data demonstrate that, although they appear and function in the tumor as bona fide endothelial cells, the GLUT1-positive endothelial cells display properties of facultative stem cells. Pretreatment with rapamycin for 4 days significantly slowed proliferation of GLUT1-selected cells, whereas propranolol pretreatment had no effect. These results reveal for the first time the facultative nature of GLUT1-positive endothelial cells in IH

    Spatial Variations of Indoor Air Chemicals in an Apartment Unit and Personal Exposure of Residents

    No full text
    Indoor air quality (IAQ) can greatly affect health in people spending much time indoors. However, the influence of IAQ on personal exposure to chemical compounds in Japan remains poorly investigated. Hence, this study aimed to clarify this influence thoroughly within one apartment. We surveyed the concentrations of 61 chemical compounds in the air in nine different spaces within an apartment unit, as well as the personal exposure of two residents in Japan. Using three kinds of diffusive samplers, this study was conducted continuously for 7 days in summer and winter. Health risks were evaluated by calculating the margin of exposure (MOE) using the measured concentrations. Some chemical concentrations showed large spatial variations and the personal exposure concentrations of these compounds also differed among residents. According to the calculated MOE, the chemicals with the highest health risk were acrolein, p-dichlorobenzene, and acetaldehyde in summer and acrolein, nitrogen dioxide, formic acid, p-dichlorobenzene, and benzene in winter. The IAQ of the house could be divided in two, and the IAQ in the space where residents spent much time (i.e., bedroom) highly affected each of the residents’ exposure. Investigating chemical concentrations in multiple spaces (including bedroom and living room) is necessary to understand the effect of IAQ on personal exposure

    Protective Effect of Ferulic Acid against Hydrogen Peroxide Induced Apoptosis in PC12 Cells

    No full text
    Ferulic Acid (FA) is a highly abundant phenolic phytochemical which is present in plant tissues. FA has biological effects on physiological and pathological processes due to its anti-apoptotic and anti-oxidative properties, however, the detailed mechanism(s) of function is poorly understood. We have identified FA as a molecule that inhibits apoptosis induced by hydrogen peroxide (H2O2) or actinomycin D (ActD) in rat pheochromocytoma, PC12 cell. We also found that FA reduces H2O2-induced reactive oxygen species (ROS) production in PC12 cell, thereby acting as an anti-oxidant. Then, we analyzed FA-mediated signaling responses in rat pheochromocytoma, PC12 cells using antibody arrays for phosphokinase and apoptosis related proteins. This FA signaling pathway in PC12 cells includes inactivation of pro-apoptotic proteins, SMAC/Diablo and Bad. In addition, FA attenuates the cell injury by H2O2 through the inhibition of phosphorylation of the extracellular signal-regulated kinase (ERK). Importantly, we find that FA restores expression levels of brain-derived neurotrophic factor (BDNF), a key neuroprotective effector, in H2O2-treated PC12 cells. As a possible mechanism, FA increases BDNF by regulating microRNA-10b expression following H2O2 stimulation. Taken together, FA has broad biological effects as a neuroprotective modulator to regulate the expression of phosphokinases, apoptosis-related proteins and microRNAs against oxidative stress in PC12 cells
    corecore