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BACKGROUND AND PURPOSE
Highly vascularized ovarian carcinoma secretes the putative endocannabinoid and GPR55 agonist, L-α-lysophosphatidylinositol
(LPI), into the circulation. We aimed to assess the involvement of this agonist and its receptor in ovarian cancer angiogenesis.

EXPERIMENTAL APPROACH
Secretion of LPI by three ovarian cancer cell lines (OVCAR-3, OVCAR-5 and COV-362) was tested by mass spectrometry.
Involvement of cancer cell-derived LPI on angiogenesis was tested in the in vivo chicken chorioallantoic membrane (CAM)
assay along with the assessment of the effect of LPI on proliferation, network formation, and migration of neonatal and adult
human endothelial colony-forming cells (ECFCs). Engagement of GPR55 was verified by using its pharmacological inhibitor
CID16020046 and diminution of GPR55 expression by four different target-specific siRNAs. To study underlying signal
transduction, Western blot analysis was performed.

KEY RESULTS
Ovarian carcinoma cell-derived LPI stimulated angiogenesis in the CAM assay. Applied LPI stimulated proliferation, network
formation, and migration of neonatal ECFCs in vitro and angiogenesis in the in vivo CAM. The pharmacological GPR55
inhibitor CID16020046 inhibited LPI-stimulated ECFC proliferation, network formation and migration in vitro as well as ovarian
carcinoma cell- and LPI-induced angiogenesis in vivo. Four target-specific siRNAs against GPR55 prevented these effects of LPI
on angiogenesis. These pro-angiogenic effects of LPI were transduced by GPR55-dependent phosphorylation of ERK1/2 and
p38 kinase.

CONCLUSIONS AND IMPLICATIONS
We conclude that inhibiting the pro-angiogenic LPI/GPR55 pathway appears a promising target against angiogenesis in
ovarian carcinoma.

Abbreviations
bFGF, basic fibroblast growth factor; CID16020046, 4-[4-(3-hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1H,4H,5H,
6H-pyrrolo [3,4-c] pyrazol-5-yl] benzoic acid; ECFC, endothelial colony-forming cell; LPI, L-α-lysophosphatidylinositol
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Introduction
Ovarian cancer is the most common cause of death from
gynaecological cancers (Siegel et al., 2012) and a high level of
angiogenesis is a poor prognostic marker in ovarian carci-
noma patients (Schoell et al., 1997; Banerjee and Kaye,
2011). Clinical studies have revealed that patients with
ovarian and peritoneal cancer show elevated levels of lys-
ophospholipids in blood and ascites fluids (Xiao et al., 2000;
2001; Xu et al., 2001; Murph et al., 2007), suggesting that
lysophospholipids might be a biomarker for these highly
vascularized tumours (Sutphen et al., 2004; Murph et al.,
2007; Pineiro and Falasca, 2012). Recently, it was shown that
L-α-lysophosphatidylinositol (LPI), but not other lysophos-
pholipids, secreted by ovarian and prostate carcinomas regu-
lated cancer cell growth via an autocrine loop (Pineiro et al.,
2011). However, the potential roles of LPI in tumour angio-
genesis have not been well explored.

LPI has been shown to be produced and secreted by
various cell types, including human platelets (Billah and
Lapetina, 1982), endothelial cells (Hong and Deykin, 1982;
Martin and Wysolmerski, 1987; Bondarenko et al., 2010) and
peripheral blood (PB) neutrophils (Smith and Waite, 1992), as
well as cancer cells (Pineiro et al., 2011). Further studies have
revealed various physiological and pathophysiological func-
tions related to LPI, including insulin release by pancreatic
cells, pain, obesity/type 2 diabetes, bone resorption and
cancer (Ford et al., 2010; Pineiro and Falasca, 2012). However,
the lack of a specific LPI receptor held back scientific research
and the development of targeted therapies.

In 2007, Oka et al. (2007) showed that LPI was a specific
agonist for the orphan GPCR, GPR55, first cloned in 1999
(Sawzdargo et al., 1999). Crystallographic analysis showed
that GPR55 consists of seven transmembrane α helices in
which LPI binds among the transmembrane helices 2, 3, 6 and
7 with the highest interaction energy as compared with other
tested GPR55 agonists (Kotsikorou et al., 2011). The GPR55
was further shown to be sensitive, although to a lesser extent,
to the endocannabinoid anandamide which suggested GPR55
might be a putative cannabinoid (Waldeck-Weiermair et al.,
2008; Zhang et al., 2010). The discovery of a receptor-mediated
biological action of LPI has allowed new investigations on the
physiological and pathological functions of this bioactive
lysophospholipid (Pineiro and Falasca, 2012; Liu et al., 2015).

It is well established that following binding of LPI to
GPR55, intracellular Ca2+ mobilization is increased
(Waldeck-Weiermair et al., 2008; Bondarenko et al., 2010;
2011a,b; Oka et al., 2010) and several signalling cascades are
increased, including ERK1/2 (Oka et al., 2007; Whyte et al.,
2009; Andradas et al., 2011; Pineiro et al., 2011), RhoA
(Henstridge et al., 2009; Kargl et al., 2013) and MAPK p38 (Oka
et al., 2010) pathways. Furthermore, LPI sustains depolariza-
tion of membranes through inhibition of Na+/K−-ATPase and
activation of non-selective cation channels (Bondarenko et al.,
2010; 2011a,b). In endothelial cells, the LPI/GPR55 axis has
been shown to (i) increase proliferation (Zhang et al., 2010);
(ii) influence motility (Murugesan and Fox, 1996; Kargl et al.,
2013); and (iii) induce expression of adhesion molecules
(VCAM-1 and ICAM1) (Kume et al., 1992). Recently, the com-
pound CID16020046 was shown to be a selective and efficient
antagonist for GPR55, but not for other cannabinoid recep-
tors, including CB1 and CB2 receptors (Kargl et al., 2013).

The ability of tumours to secrete growth factors and
induce new blood vessel formation has become a central
focus in cancer research (Potente et al., 2011). Although
various growth factors including VEGF and basic fibroblast
growth factor (bFGF) have been shown to play a major role in
angiogenesis, other factors (e.g. angiopoietins and hepatocyte
growth factor) are also involved (Welti et al., 2013). For
decades, isolated endothelial cells have served as model
system to study the effect of growth factors and inhibitors
(Basile and Yoder, 2014). Primary human endothelial colony-
forming cells (ECFCs) are a subpopulation of endothelial pro-
genitor cells (Yoder et al., 2007) and are considered a reliable
endothelial/angiogenic model due to their high proliferative
potential and robust vessel formation in vivo (Yoder et al.,
2007; Melero-Martin et al., 2008; Reinisch et al., 2009;
Hofmann et al., 2012).

Based on reports that LPI is produced and secreted by
highly vascularized ovarian carcinomas (Pineiro et al., 2011;
Pineiro and Falasca, 2012), we decided to investigate the
potential role of the LPI/GPR55 axis in promoting angiogen-
esis. Accordingly, we investigated whether LPI secreted by
ovarian carcinoma cells could be a cause of the increased
(tumour) angiogenesis. Furthermore, we aimed to determine
the effect of LPI/GPR55 on endothelial cell proliferation,
network formation, and migration in vitro and angiogenesis
in an in vivo chicken chorioallantoic membrane (CAM) assay
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as well as the underlying mechanisms. Targeting the LPI/
GPR55 axis could represent potential models of pro- and
anti-angiogenic treatment.

Methods

Cell culture
Human ECFCs were isolated from neonatal cord and periph-
eral blood and their distinct endothelial phenotypes were
verified by flow cytometry as previously described (see Sup-
porting Information Fig. S1) (Hofmann et al., 2009; 2012;
Reinisch and Strunk, 2009; Reinisch et al., 2009). HUVECs
were obtained from Lonza (Basel, Switzerland). ECFC and
HUVECs were grown in endothelial growth medium-2
(EGM-2) (Lonza) containing 2% FBS and 1% penicillin/
streptomycin/L-glutamine/heparin (Life Technologies, Carls-
bad, CA, USA) and EGM-2 growth factor supplements
(composed of bFGF, IGF-2, EGF, VEGF, ascorbic acid, hydro-
cortisone). Ovarian carcinoma cell lines OVCAR-3 (American
Type Culture Collection, Manassas, VA, USA), OVCAR-5
(kindly provided by the Cell Culture Core, Vascular Biology
Program, Boston Children’s Hospital, Boston, MA, USA) and
COV-362 (Sigma Aldrich, St. Louis, MO, USA) were grown in
DMEM containing 10% FBS.

Ethics statement
Prior approval was obtained for human cell and tissue sample
collection from the Institutional Review Board of the Medical
University of Graz (protocols 19-252 ex 07/08, 18-243 ex
06/07, 21.060 ex 09/10). Adult samples were collected after
written informed consent from healthy volunteers, and
umbilical cord samples after written informed consent by the
mother after full-term pregnancies in accordance with the
Declaration of Helsinki.

Extraction of lipids
Up to 19 mL of conditioned medium from 6–10 million cells
of OVCAR-3, OVCAR-5, DMEM and 14 mL from COV-362
cells were extracted with 40 mL of acidified 2:1 metha-
nol : chloroform and 0.05 N HCl in a 60 mL separator funnel.
The bottom layer was collected and dried under a gentle
stream of nitrogen in a 20 mL glass vial. The lipid extract was
reconstituted in 200 μL chloroform : methanol (2:1 v/v) prior
to injection.

LPI measurement
Chemical standards of LPI were obtained from Sigma Aldrich.
An LC-MS/MS method was optimized on an Agilent (Agilent
Technologies, Santa Clara, CA, USA) 6460 triple-quadrupole
mass spectrometer using multiple reaction monitoring (MRM)
in negative ion mode. Specifically, the MRM transitions used
for LPI were 571.3 – >255.1 m/z for quantification and 571.3 –
>152.9 m/z for confirmation. A collision energy of 41 V and a
fragmentor setting of 207 V were used to monitor both MRM
transitions. The most abundant fragment corresponds to the
loss of palmitic acid and the secondary fragment corresponds
to the subsequent loss of the inositol, leaving a C3H6O5P− ion at
152.9 m/z. Mass spectrometer parameter settings were gas
temperature (350°C), gas flow (10 L·min−1), nebulizer (30 psi),

sheath gas temperature (400°C), sheath gas flow (11 L·min−1),
capillary voltage (3800 V) and nozzle voltage (500 V). Liquid
chromatography conditions with a Dikma-Biobond C4
column 4.6 × 50 mm 5 μm particle size were used for separa-
tion. Chromatography method included gradient elution at
0.400 mL·min−1 with solvent 20 mM ammonium carbonate/
0.1% ammonium hydroxide as mobile phase A and acetoni-
trile for mobile phase B. The gradient started at 0% B and
progressed to 100% A in 16 min, and then changed back to 0%
B over 0.1 min, and re-equilibrated for 3.9 min before the next
injection. A 10 μL sample injection was used for all standards
and samples. An external standard curve was used to calculate
concentrations of LPI in different samples between 0.0025 and
0.25 μM. The lower limit of detection and quantification was
determined to be at 2.5 nM with a S/N > 12. A validation of the
method was done using 20 nM LPI added to DMEM contain-
ing 10% FBS and extracted using the method described, and
reconstituted in 200 μL chloroform : methanol (2:1 v/v) prior
to injection. The control experiment was done using DMEM
containing 10% FBS prepared in the same manner. A linear
calibration curve was measured for LPI with an R2 of 0.95.

Proliferation assay
ECFCs from three different cord blood donors, HUVECs and
peripheral blood ECFC were seeded in 24-well plates (Nalge
Nunc, Rochester, NY, USA) in EGM-2 at a density of 3000
cells/cm2 and allowed to adhere for 24 h. Subsequently,
cells were subjected to growth factor-reduced medium
[EBM-2 (Lonza) containing 2% FBS and 1% penicillin/
streptomycin/L-glutamine/heparin (Life Technologies)
without the addition of EGM-2 growth factor supplements]
with or without different concentrations of LPI (Sigma)
and/or endocannabinoid receptor antagonists: CID16020046
(Tocris Bioscience, Northpoint, Avonmouth, Bristol, UK) and
AM251, SR144528 (both Cayman Chemical Europe, Tallinn,
Estonia). A 30 min treatment with 10 μM U0126 (Cell Sign-
aling, Cambridge, UK) was also tested. After 48 h, treated cells
were harvested and the cell number was counted by a Casy
cell counter (Roche, Mannheim, Germany). Nine independ-
ent experiments per group were performed in triplicate.

Matrigel angiogenesis assay
Capillary-like network formation of ECFC, isolated from
three different donors, plated on growth factor-reduced
Matrigel® (BD, Biosciences, San Jose, CA, USA) was performed
according to the instruction manual included in the purchase
of Matrigel. The influence of LPI and different endocannabi-
noid receptor antagonists was tested in growth factor-reduced
medium [EBM-2 (Lonza) containing 2% FBS and 1%
penicillin/streptomycin/L-glutamine/heparin (Life Technolo-
gies) without the addition of EGM-2 growth factor supple-
ments]. Network formation (14–16 h) was documented with
a Nikon SPOT camera on a Nikon microscope (Nikon,
Amsterdam, The Netherlands). Branch points were counted
after 16 h by ImageJ [National Institutes of Health (NIH),
Bethesda, MD, USA]. Nine independent experiments per
group were performed in triplicate.

Ovarian cancer cell conditioned media
Ovarian cancer cells OVCAR-3, OVCAR-5 and COV-362 cells
were grown in a 10 cm dish with DMEM and 10% FBS until
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approximately 80% confluent. After washing with PBS, cells
were incubated in 10 mL phenol-free DMEM without serum
for 24 h. Conditioned medium was collected, centrifuged and
immediately used. Non-conditioned phenol red-free DMEM
served as negative control.

CAM assay
Chicken eggs were purchased from Charles River Laboratories
(Wilmington, MA, USA) and placed in an incubator at 37°C,
40% humidity. On day 3, up to 8 mL of albumin was aspi-
rated from a small hole made at the bottom of the egg and the
hole was sealed with candle wax. Then an approximately
2 cm large window was cracked into the rounded part of the
upright egg using Dumont tweezers (6) and the egg mem-
brane was completely removed. The window was covered
with a cap of sterilized aluminium foil. The eggs were then
incubated in a cell culture incubator at 37°C, 40% humidity,
3% CO2. On day 7, up to 2 mm filter paper patches were
punched out of sterilized Whatman-filter papers (Sigma
Aldrich) and placed on a sterile surface. Five microlitres of
treatment solution, control medium or ovarian cancer cell
conditioned medium from OVCAR-3, OVCAR-5 or COV-362
cells , as indicated, were dropped on each filter paper allowing
it to dry for 15 min and carefully placed on the developing
CAM. Blood vessel development was observed daily and pic-
tures were taken 3 days (day 10 of egg development) after
treatment with a stereo microscope. Vessels crossing the
outline of the filter paper were analysed using ImageJ (NIH).
Six to nine independent experiments per group were per-
formed in triplicate.

Reduction of GPR55 gene expression
by siRNA
Transfection of ECFCs with a pool of four validated target-
specific GPR55 siRNAs (FlexiTube siRNA; Qiagen, Venlo, The
Netherlands) (referred to as siGPR55) or scrambled siRNA
(Qiagen) (referred to as sicontrol) was performed using Lipo-
fectamine® RNAiMAX reagent (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s protocol. All experi-
ments were performed 36–48 h after transfection. The effi-
ciency of siRNAs and of an appropriate negative control was
determined by Western blot.

Proteome profiler arrays
The Proteome Profiler Human Phospho-Kinase Array Kit (Cat.
No: ARY003B) and Human Angiogenesis Array Kit (Cat. No:
ARY007) were obtained from R&D Systems (Minneapolis,
MN, USA). ECFCs were treated with vehicle or LPI (10 μM) for
15 min or 24 h, respectively, and analysed according to
manufacturer’s instructions. The average signal (pixel
density) of duplicate spots representing each protein was
evaluated by ImageJ (NIH). After background subtraction, a
twofold increase was considered to be significant.

Western blot analysis
ECFCs were serum starved for 6–24 h and subsequently treated
with vehicle, LPI and/or CID366791 for 0–60 min. In order to
extract the sturdily membrane-bound GPR55, cells were lysed
directly with 1× reducing Laemmli (SDS sample) buffer
(Boston BioProducts, Inc., Boston, MA, USA) and precipitated

10 min at 90°C. Otherwise, cells were lysed and Western blots
were performed as previously described by us (Hofmann et al.,
2012; 2014). Specific proteins were detected using antibodies
against GPR55 (Thermo Scientific, Tewksbury, MA, USA) and
total or phosphorylated ERK1/2 or p38 (all obtained from Cell
Signaling), and compared with housekeeping protein control
β-actin (Santa Cruz, Dallas, TX, USA). Pixel intensity was
determined using ImageJ (NIH). Six independent experiments
per group were performed in triplicate.

Data analysis
‘n’ values refer to the number of individual experiments per-
formed. Data were compared using ANOVA and subsequent
Bonferroni post hoc test or two-tailed Student’s t-test assuming
unequal variances, where applicable. Statistical significance
was assumed at P < 0.05. EC50 and IC50 values were calculated
out of at least three independent experiments with three to
five repeats for each concentration using GraphPad Prism® 5.0f
(GraphPad Software, La Jolla, CA, USA) and expressed with the
95% confidence interval provided in parenthesis.

Results

Ovarian cancer cells produce LPI and mediate
angiogenesis through GPR55
Increased serum levels of the GPR55-ligand LPI have been
found in patients with high-grade ovarian carcinoma (Xiao
et al., 2000; 2001; Xu et al., 2001; Sutphen et al., 2004; Murph
et al., 2007; Pineiro et al., 2011; Pineiro and Falasca, 2012). To
test our hypothesis, that ovarian cancer cells secrete LPI, and
thus promote tumour angiogenesis in vivo via an LPI/GPR55-
dependent mechanism; conditioned medium from the
human ovarian cancer cell lines OVCAR-3, OVCAR-5 and
COV-362 was analysed for its LPI levels and in the CAM
angiogenesis model. LC-MS/MS revealed that OVCAR-3,
OVCAR-5 and COV-362 cells produced significant but quite
different amounts of LPI (Figure 1A). Within 3 days, condi-
tioned medium from OVCAR-3, OVCAR-5 and COV-362
strongly induced angiogenesis in vivo to a similar extent (90–
100% increase), compared with unconditioned medium
(Figure 1B). Selective inhibition of the LPI receptor GPR55
with CID16020046 (20 μM) effectively blocked ovarian
cancer-induced angiogenesis of all tested cell lines
(Figure 1B). Together, these results suggest that LPI produced
by ovarian cancer cells induces angiogenesis in a GPR55-
dependent manner.

LPI regulates angiogenic potential of
endothelial cells in vitro and angiogenesis
in vivo
The effects of purified LPI on endothelial cell proliferation,
network formation and migration were tested in vitro on
isolated endothelial colony-forming progenitor cells (ECFCs)
derived from three different donors. The isolated human neo-
natal cord ECFCs showed a distinct endothelial phenotype
as shown by expression of typical endothelial cell surface
markers (Supporting Information Fig. S1), as previously
shown (Hofmann et al., 2009; 2012; Reinisch and Strunk,
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2009; Reinisch et al., 2009). LPI stimulated ECFC proliferation
in a dose-dependent manner with an EC50 of 2.8 (2.2–3.6) μM
(Supporting Information Fig. S2a). Low concentrations of
LPI, resembling the endogenous LPI levels secreted by 107

ovarian carcinoma cells (1 nM), were sufficient to stimulate
proliferation of ECFCs (Supporting Information Fig. S2a). The
maximum proliferative increase (1.55 ± 0.1-fold increase) was
measured within 48 h upon applying 10 μM LPI as compared
with vehicle controls (Figure 2A and Supporting Information
Fig. S2a) and further experiments were performed at this
10 μM concentration. HUVECs showed a similar increase in

proliferation as did isolated human adult peripheral blood
ECFCs (Supporting Information Fig. S2b). Furthermore, com-
pared with vehicle controls, 10 μM LPI significantly increased
ECFC network formation in an in vitro Matrigel assay
(Figure 2B) and closure of an endothelial wound in an in vitro
scratch assay (Figure 2C).

To investigate whether these stimulatory effects could
occur in vivo, we analysed angiogenesis in a CAM assay. For
this purpose, we placed a filter paper soaked and then dried
with either vehicle or 10 μM LPI on the developing 7-day-old
CAM. Within 72 h, 10 μM LPI had significantly increased
vessel formation, compared with vehicle control (Figure 2D).
Together, these in vitro and in vivo results indicate that LPI is
a potent pro-angiogenic factor.

LPI-induced angiogenesis is GPR55 dependent
To identify a pharmacological inhibitor of LPI-mediated pro-
angiogenesis, we tested specific antagonists of known LPI
receptors such as the CB1, CB2 recptors and GPR 55 (Pineiro
and Falasca, 2012). The GPR55 antagonist CID16020046
(Kargl et al., 2013) decreased LPI-induced ECFC proliferation
in a concentration-dependent manner with an IC50 of 17.9
(17.3–18.5) μM (Supporting Information Fig. S3a). LPI-
stimulated ECFC proliferation was most effectively inhibited
with a CID16020046 concentration of 20 μM, without affect-
ing basal ECFC proliferation (Figure 3A). In contrast, the LPI-
stimulated effect was not significantly inhibited by addition
of the CB1 receptor antagonist/GPR55 agonist (AM251) or by
antagonism of CB2 receptors with SR144528 (Supporting
Information Fig. S3b). Furthermore, CID16020046 totally
suppressed the LPI-induced network formation (Figure 3B)
and endothelial wound healing (Figure 3C), without affecting
the basal angiogenic capacity of endothelial cells. To confirm
that LPI activity was GPR55 dependent, GPR55 was geneti-
cally knocked down with a mix of four validated siRNAs in
ECFCs (Figure 3D). In response to LPI, siGPR55-ECFCs
showed significantly reduced proliferation as compared with
ECFCs transfected with control siRNA (Figure 3E). Simultane-
ous treatment with the GPR55 inhibitor CID16020046 sig-
nificantly reduced the LPI-stimulated angiogenesis in the in
vivo CAM model (Figure 4). Neither CID16020046 nor silenc-
ing of GPR55 significantly affected basal angiogenic activities
of ECFCs in vitro nor angiogenesis in the CAM assay in vivo
(Figures 3 and 4; Supporting Information Fig. S3). Altogether,
these results demonstrate that exogenous LPI stimulates the
pro-angiogenic capacity of ECFCs in vitro and angiogenesis in
vivo in a specifically GPR55-dependent manner.

LPI/GPR55 stimulates ERK1/2 and
p38 activation
A human phospho-kinase array was used to investigate the
molecular mechanisms underlying LPI/GPR55-mediated
angiogenesis. Of the various phospho-proteins in the array,
LPI significantly induced phosphorylation of only ERK1/2
and p38 in ECFCs (Figure 5A and Supporting Information
Table S1). Western blot analysis confirmed a time-dependent
activation of ERK1/2 and p38 by 10 μM LPI (Figure 5B) but
not the potential involvement of CREB (cAMP response
element-binding protein) (data not shown). Pharmacological
inhibition of GPR55 by 20 μM CID16020046 significantly

Figure 1
Ovarian cancer cells produce LPI and induce chicken CAM angiogen-
esis in a GPR55-dependent manner. (A) Quantification of LPI in
conditioned medium from three different ovarian cancer cell lines
(OVCAR-3, OVCAR-5, COV-362). (B) Quantification of vessel
numbers around white filter paper in an in vivo CAM assay (by
ImageJ). Filter papers were loaded with unconditioned DMEM or
24 h conditioned DMEM (CM) of three different ovarian cancer cell
lines (OVCAR-3, OVCAR-5, COV-362), respectively, with or without
vehicle or GPR55 inhibitor CID16020046 (CID). Representative mac-
roscopic pictures of CAM angiogenesis around filter paper contain-
ing control DMEM, OVCAR-5 CM or OVCAR-5 CM with CID. n = 6–9;
*P < 0.05; **P < 0.01, significantly different from vehicle control;
#P < 0.01, significantly different from corresponding ovarian cancer
CM. ANOVA followed by Bonferroni test.

BJPLPI mediates ovarian cancer-induced angiogenesis

British Journal of Pharmacology (2015) 172 4107–4118 4111

http://onlinelibrary.wiley.com/doi/10.1111/bph.13196/suppinfo
http://onlinelibrary.wiley.com/doi/10.1111/bph.13196/suppinfo
http://onlinelibrary.wiley.com/doi/10.1111/bph.13196/suppinfo
http://onlinelibrary.wiley.com/doi/10.1111/bph.13196/suppinfo
http://onlinelibrary.wiley.com/doi/10.1111/bph.13196/suppinfo
http://onlinelibrary.wiley.com/doi/10.1111/bph.13196/suppinfo
http://onlinelibrary.wiley.com/doi/10.1111/bph.13196/suppinfo
http://onlinelibrary.wiley.com/doi/10.1111/bph.13196/suppinfo
http://onlinelibrary.wiley.com/doi/10.1111/bph.13196/suppinfo
http://onlinelibrary.wiley.com/doi/10.1111/bph.13196/suppinfo
http://onlinelibrary.wiley.com/doi/10.1111/bph.13196/suppinfo


reduced LPI-induced ERK1/2 and p38 phosphorylation
(Figure 5C). To confirm the GPR55-dependent activation of
ERK1/2 and p38 by LPI, GPR55 was silenced by siRNA
(Figure 5D). Compared with control siRNA, knock-down of
GPR55 suppressed the LPI-stimulated ERK1/2 and p38 phos-
phorylation (Figure 5D). Moreover, ECFCs pretreated with
the well-established and highly selective MEK1/MEK2
inhibitor U0126 (10 μM) (Favata et al., 1998), which blocks
downstream activation of ERK1/2, eliminated ERK1/2 basal
phosphorylation without altering total ERK1/2 amounts
(Figure 6A). However, LPI no longer induced ERK1/2 phos-
phorylation (Figure 6A). Furthermore, ERK1/2 inhibition

blocked normal ECFC proliferation, without reducing the
initial cell number, and prevented the LPI-induced ECFC
proliferation, indicating a crucial role for ERK1/2 during
endothelial cell proliferation (Figure 6B). Together, these
results suggest that LPI induces GPR55-dependent activation
of ERK1/2 and thus leads to increased angiogenesis.

We further investigated whether the observed pro-
angiogenic effect of LPI relies on an LPI-induced
up-regulation of angiogenesis-related proteins and thereby
indirectly leads to an autocrine angiogenic feedback loop
with an activation of ERK1/2 and p38. A proteome profiler
human angiogenesis array revealed that LPI did not lead to an

Figure 2
LPI stimulates angiogenesis in vitro and in vivo. (A–C) Effect of vehicle or 10 μM LPI on neonatal ECFC. (A) Cell numbers (×103) after 48 h in vitro
proliferation assay. Dotted line marks starting cell number (12.000 cells). (B) Branch point formation in an in vitro angiogenesis assay after 16 h.
(C) Closure of in vitro endothelial scratch area after 16 h. (A–C) Respective representative cell culture pictures with black bars marking 200 μm.
n = 9; (D) Quantification of vessel numbers around white filter paper in an in vivo chicken CAM assay after 72 h with respective representative
macroscopic pictures. n = 6–9; ***P < 0.001, significantly different from vehicle; Student’s t-test.
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altered production of any of the 55 tested known
angiogenesis-related proteins from ECFCs within 24 h
(Figure 6C and Supporting Information Table S2).

Discussion

Ovarian carcinomas are highly vascularized tumours (Schoell
et al., 1997; Domcke et al., 2013; Sinha et al., 2013). LPI pro-
duced and secreted by ovarian and prostate cancer cells has
been shown to induce a GPR55-dependent autocrine loop
regulating cancer growth (Pineiro et al., 2011). Although the
intracellular effect of LPI and its receptor GPR55 has been
extensively studied, to this date a causative role of LPI/GPR55
in (tumour) angiogenesis in vivo and its underlying molecular
mechanism in endothelial cells remains uncharacterized. In
the present study, we demonstrated that ovarian cancer cells
produced and secreted LPI which stimulated ECFC angio-
genic potential in vitro and in vivo angiogenesis in the CAM in
a GPR55-dependent manner via activation of the MAPK
pathway.

The OVCAR-3, OVCAR-5 and COV-362 cell lines were
derived from patients with high-grade serious ovarian cancer

and formed highly vascularized tumours (Godwin et al.,
1992; Domcke et al., 2013; Sinha et al., 2013). In the present
study, we have demonstrated that these ovarian carcinoma
cell lines secrete LPI and induce in vivo CAM angiogenesis in
a GPR55-dependent manner. Even though other mediators,
as VEGF, are most likely also involved in this process, the fact
that blocking of GPR55 inhibits LPI-induced vessel number
suggests that this is a LPI-mediated event. We therefore
hypothesized that LPI secreted by ovarian carcinomas stimu-
lates endothelial pro-angiogenic activities (i.e. proliferation,
migration, network formation) and increases angiogenesis.
Very few reports have been published yet on the effect of LPI
on endothelial cell angiogenic activity (Pineiro and Falasca,
2012). It has been shown that LPI induces in vitro prolifera-
tion of human microvascular endothelial cells (HMVECs)
(Zhang et al., 2010). Effects on endothelial cell motility have
been studied but with contradictory results (Murugesan and
Fox, 1996; Kargl et al., 2013). Murugesan and Fox (1996)
showed an LPI-induced decrease of dermal-derived HMVEC
migration, whereas Kargl et al. (2013) showed a stimulatory
effect of LPI on motility of lung-derived HMVECs. These
differing results might be due to the endothelial cells being
isolated from different vascular beds. We investigated the

Figure 3
Pharmacological and siRNA inhibition of GPR55 prevents LPI-induced angiogenic activity of ECFCs in vitro. (A–C) Effect of vehicle, GPR55 inhibitor
CID16020046 (20 μM; CID), LPI (10 μM) or LPI + CID on neonatal ECFC. (A) proliferation, shown in % as compared with vehicle control after 48 h
in vitro proliferation assay. (B) Branch point formation, shown in % as compared with vehicle control in an in vitro angiogenesis assay after 16 h.
(C) Closure of in vitro endothelial scratch area, shown in % as compared with vehicle control after 16 h. (D) Western blot analysis of GPR55
expression and β-actin in whole cell lysates of ECFCs transfected with control siRNA (sicontrol) or four selective siRNAs against GPR55 (siGPR55).
(E) Proliferation increase of ECFCs transfected with control siRNA (sicontrol) or four selective siRNAs against GPR55 (siGPR55) in response to vehicle
or 10 μM LPI (48 h). All n = 9; **P < 0.01, significantly different from vehicle sicontrol; #P < 0.001, significantly different from LPI-treated sicontrol
ECFCs. ANOVA followed by Bonferroni test.
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effect of LPI on human ECFCs in vitro, cells with robust
proliferative and vasculogenic capabilities (Yoder et al., 2007).
We found that LPI is a potent stimulant for ECFC prolifera-
tion, migration and network formation in vitro and is an
effective pro-angiogenic factor in the in vivo CAM assay. LPI
stimulated ECFC proliferation at low concentrations (about 1
nM) and reached its maximum pro-proliferative potential at
10 μM. The stimulatory effect of LPI on ECFC proliferation
was confirmed in other endothelial cell sources as well,
including human adult peripheral ECFCs and HUVECs. It
would be worthwhile to investigate the effects of LPI on
additional endothelial cell sources and also on non-
endothelial cells.

The in vitro and in vivo stimulatory effects of LPI were
reduced by pharmacological (CID16020046) and genetic
inhibition (siRNA) of GPR55. LPI specifically activates GPR55
but not CB1 or CB2 receptors (Bondarenko et al., 2010; Kargl
et al., 2013; Liu et al., 2015). Consistent with this specificity,
inhibition of these CB receptors did not significantly affect
the LPI-induced proliferation of ECFCs. Together, these
results confirm that the LPI-mediated effects on angiogenesis
in vitro and in vivo are regulated by GPR55. However, LPI-
induced ECFC proliferation and in vivo angiogenesis could
not be eliminated completely by pharmacological or genetic
GPR55 inhibition. This is in accordance with previous reports
of an additional GPR55-independent endothelial cell depo-
larization by LPI (Bondarenko et al., 2010; 2011a,b).

Mechanistically, we showed that LPI stimulated a GPR55-
dependent phosphorylation of ERK1/2 and p38. Ovarian
cancer cell supernatants also significantly stimulated ERK1/2
and p38 according to the lower LPI concentration. In the
pro-angiogenic signalling cascade ERK1/2 is a well-
established mediator of proliferation (Zhang and Liu, 2002),
while p38 has been shown to regulate actin reorganization
and thereby cell migration (Rousseau et al., 1997; Lamalice
et al., 2007). Therefore, ERK1/2 inhibition by U0126 blocked
LPI-induced proliferation of ECFCs. ECFCs showed basal
levels of ERK1/2 indicating an essential role of ERK1/2 during
normal endothelial cell proliferation. This could explain why
inhibition of ERK1/2 also inhibited normal ECFC prolifera-
tion. Our results suggest a crucial role of the MAPK pathway
also during LPI-induced angiogenesis. The finding that LPI
does not alter the basal production of the tested angiogenesis-
related proteins, as VEGF, suggests that LPI does not activate
an autocrine loop. Nonetheless, our data show that LPI sig-
nificantly stimulates a pro-angiogenic response of endothelial
cells. This leaves open to question whether the pro-
angiogenic properties of LPI are due to a facilitated angio-
genic response to the basal levels of growth factors produced
by ECFCs or if this process involves other yet unknown
mediators.

Interestingly, neither the GPR55 inhibitor CID16020046
nor silencing of GPR55 with siRNAs had a significant effect
on any of the tested basal angiogenic functions of endothelial

Figure 4
Pharmacological inhibition of GPR55 prevents LPI-induced angiogenesis in an in vivo chicken CAM assay. Quantification (by ImageJ) of vessel
numbers around white filter paper in an in vivo CAM assay after 72 h. Filter papers were loaded with vehicle, 20 μM GPR55 inhibitor CID16020046
(CID), 10 μM LPI or both. Images are respective representative macroscopic pictures. n = 6–9; ***P < 0.001; **P < 0.01, significantly different from
vehicle control; #P < 0.001, significantly different from LPI treatment. ANOVA followed by Bonferroni test.
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Figure 5
LPI-induced ERK1/2 and p38 phosphorylation is GPR55 dependent. (A) Human phospho-kinase array of whole neonatal-ECFC lysates after 15 min
treatment with vehicle or 10 μM LPI. Pixel intensity, quantified by ImageJ, revealed an LPI-induced ERK1/2 and p38 phosphorylation. (B) Western
blot analysis of total ECFC lysates after 0, 5, 15 and 30 min of 10 μM LPI treatment. Blots were probed with antibody against total or
phosphorylated (p) ERK1/2 or p38 or β-actin. (C) Western blot analysis of total and phosphorylated ERK1/2 and p38 phosphorylation in ECFC
lysates after 15 min treatment with vehicle, 20 μM CID16020046 (CID), 10 μM LPI or both. Quantification of the ratio of p-ERK1/2 or p-p38
normalized to β-actin immunostaining. n = 6; ***P < 0.001, significantly different from vehicle control; #P < 0.001, significantly different from
LPI-treated ECFCs. ANOVA followed by Bonferroni test. (D) Western blot analysis of ERK1/2 and p38 phosphorylation in untreated (−) ECFCs or after
transfection with control siRNA (sicontrol) or siRNA against GPR55 (siGPR55) in response to vehicle or 10 μM LPI (15 min). Quantification of
the ratio of p-ERK1/2 or p-p38 normalized to β-actin immunostaining. n = 6; ***P < 0.001, significantly different from untreated vehicle control;
#P < 0.001, significantly different from LPI-treated sicontrol ECFCs. ANOVA followed by Bonferroni test.
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cells. This suggests that normal blood vessels would not be
inhibited when applying CID16020046, possibly only the
LPI-induced angiogenesis as in ovarian carcinoma. Therefore,
CID16020046 could be of potential interest as an anti-
(ovarian) cancer drug. Although beyond the scope of this
study, it would be of interest to study the effect of the phar-
macological GPR55 inhibitor CID16020046 on ovarian
tumour size and vascularity in mice, and furthermore to
investigate the involvement of ovarian tumour angiogenesis
in GPR55 knockout mice in vivo. Our hypothesis is that LPI is
an endogenous factor secreted upon a pathological event (e.g.
after ischaemia, wound healing or from cancer cells) (Pineiro
et al., 2011; Pineiro and Falasca, 2012), leading to increased
angiogenesis. Further investigation of the physiological and
pathological circumstances leading to LPI production by dif-
ferent cell sources would also be of interest in determining
the physiological role of LPI and GPR55 inhibition in vivo.

In summary, our results show that LPI is a (ovarian)
tumour-derived pro-angiogenic factor that acts through
GPR55-dependent activation of ERK1/2 and p38 in endothe-
lial cells. Our data suggest the LPI/GPR55 axis may be a
significant target for the development of pro- and anti-

angiogenic therapies. Further, we propose that the GPR55
antagonism (e.g. by CID16020046) could be of potential
interest to develop an anti-tumour angiogenesis treatment
(e.g. for patients with ovarian carcinoma).
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