259 research outputs found

    Vaccination with liposome-coupled glypican-3-derived epitope peptide stimulates cytotoxic T lymphocytes and inhibits GPC3-expressing tumor growth in mice

    Get PDF
    AbstractBecause therapeutic manipulation of immunity can induce tumor regression, anti-cancer immunotherapy is considered a promising treatment modality. We previously reported that glypican-3 (GPC3), an oncofetal antigen overexpressed in hepatocellular carcinoma (HCC), is a useful target for cytotoxic T lymphocyte (CTL)-mediated cancer immunotherapy, and we have performed clinical trials using the GPC3-derived peptide vaccine. Although vaccine-induced GPC3-peptide-specific CTLs were often tumor reactive in vitro and were correlated with overall survival, no complete response was observed. In the current study, we synthesized liposome-coupled GPC3-derived CTL epitope peptide (pGPC3-lipsome) and investigated its antitumor potential. Vaccination with pGPC3-liposome induced peptide-specific CTLs at a lower dose than conventional vaccine emulsified in incomplete Freund's adjuvant. Coupling of pGPC3 to liposomes was essential for effective priming of GPC3-specific CTLs. In addition, immunization with pGPC3-liposome inhibited GPC3-expressing tumor growth. Thus, vaccination with tumor-associated antigen-derived epitope peptides coupled to the surfaces of liposomes may be a novel therapeutic strategy for cancer

    Intratumoral peptide injection enhances tumor cell antigenicity recognized by cytotoxic T lymphocytes: a potential option for improvement in antigen-specific cancer immunotherapy

    Get PDF
    Antigen-specific cancer immunotherapy is a promising strategy for improving cancer treatment. Recently, many tumor-associated antigens and their epitopes recognized by cytotoxic T lymphocytes (CTLs) have been identified. However, the density of endogenously presented antigen-derived peptides on tumor cells is generally sparse, resulting in the inability of antigen-specific CTLs to work effectively. We hypothesize that increasing the density of an antigen-derived peptide would enhance antigen-specific cancer immunotherapy. Here, we demonstrated that intratumoral peptide injection leads to additional peptide loading onto major histocompatibility complex class I molecules of tumor cells, enhancing tumor cell recognition by antigen-specific CTLs. In in vitro studies, human leukocyte antigen (HLA)-A*02:01-restricted glypican-3(144-152) (FVGEFFTDV) and cytomegalovirus(495-503) (NLVPMVATV) peptide-specific CTLs showed strong activity against all peptide-pulsed cell lines, regardless of whether the tumor cells expressed the antigen. In in vivo studies using immunodeficient mice, glypican-3(144-152) and cytomegalovirus(495-503) peptides injected into a solid mass were loaded onto HLA class I molecules of tumor cells. In a peptide vaccine model and an adoptive cell transfer model using C57BL/6 mice, intratumoral injection of ovalbumin(257-264) peptide (SIINFEKL) was effective for tumor growth inhibition and survival against ovalbumin-negative tumors without adverse reactions. Moreover, we demonstrated an antigen-spreading effect that occurred after intratumoral peptide injection. Intratumoral peptide injection enhances tumor cell antigenicity and may be a useful option for improvement in antigen-specific cancer immunotherapy against solid tumors

    Next-Generation Cancer Immunotherapy Targeting Glypican-3

    Get PDF
    Glypican-3 (GPC3), a 65 kD protein consisting of 580 amino acids, is a heparan sulfate proteoglycan bound to the cell membrane by glycosylphosphatidylinositol. This protein is expressed in the liver and the kidney of healthy fetuses but is hardly expressed in adults, except in the placenta. Contrarily, GPC3 is specifically expressed in hepatocellular carcinoma (HCC), ovarian clear cell carcinoma, melanoma, squamous cell carcinoma of the lung, hepatoblastoma, nephroblastoma (Wilms tumor), yolk sac tumor, and some pediatric cancers. Although the precise function of GPC3 remains unclear, it has been strongly suggested that it is related to the malignant transformation of HCC. We identified GPC3 as a promising target for cancer immunotherapy and have been working on the development of cancer immunotherapeutic agents targeting it through clinical trials. In some trials, it was revealed that the GPC3 peptide vaccines we developed using human leukocyte antigen-A24- and A2-restricted GPC3-derived peptides could induce GPC3-specific cytotoxic T cells in most vaccinated patients and thereby improve their prognosis. To further improve the clinical efficacy of cancer immunotherapy targeting GPC3, we are also developing next-generation therapeutic strategies using T cells engineered to express antigen-specific T-cell receptor or chimeric antigen receptor. In addition, we have successfully monitored the levels of serum full-length GPC3 protein, which is somehow secreted in the blood. The utility of GPC3 as a biomarker for predicting tumor recurrence and treatment efficacy is now being considered. In this review article, we summarize the results of clinical trials carried out by our team and describe the novel agent targeting the cancer-specific shared antigen, GPC3

    Optimization of the proliferation and persistency of CAR T cells derived from human induced pluripotent stem cells

    Get PDF
    CARシグナルを補完する遺伝子改変により *iCAR-T細胞の固形がん治療効果が改善される. 京都大学プレスリリース. 2022-12-13.Genetic modifications boosting CAR signaling improve the therapeutic efficacy of iPSC-derived CAR-T cells against solid tumors. 京都大学プレスリリース. 2022-12-13.The effectiveness of chimaeric antigen receptor (CAR) T-cell immunotherapies against solid tumours relies on the accumulation, proliferation and persistency of T cells at the tumour site. Here we show that the proliferation of CD8αβ cytotoxic CAR T cells in solid tumours can be enhanced by deriving and expanding them from a single human induced-pluripotent-stem-cell clone bearing a CAR selected for efficient differentiation. We also show that the proliferation and persistency of the effector cells in the tumours can be further enhanced by genetically knocking out diacylglycerol kinase, which inhibits antigen-receptor signalling, and by transducing the cells with genes encoding for membrane-bound interleukin-15 (IL-15) and its receptor subunit IL-15Rα. In multiple tumour-bearing animal models, the engineered hiPSC-derived CAR T cells led to therapeutic outcomes similar to those of primary CD8 T cells bearing the same CAR. The optimization of effector CAR T cells derived from pluripotent stem cells may aid the development of long-lasting antigen-specific T-cell immunotherapies for the treatment of solid tumours

    A clinically applicable and scalable method to regenerate T-cells from iPSCs for off-the-shelf T-cell immunotherapy

    Get PDF
    動物由来の成分を含まないより安全な製法でiPS細胞から大量の再生T細胞を培養する方法の開発 --T細胞を使ったがん免疫療法での利用も--. 京都大学プレスリリース. 2021-01-18.Clinical successes demonstrated by chimeric antigen receptor T-cell immunotherapy have facilitated further development of T-cell immunotherapy against wide variety of diseases. One approach is the development of “off-the-shelf” T-cell sources. Technologies to generate T-cells from pluripotent stem cells (PSCs) may offer platforms to produce “off-the-shelf” and synthetic allogeneic T-cells. However, low differentiation efficiency and poor scalability of current methods may compromise their utilities. Here we show improved differentiation efficiency of T-cells from induced PSCs (iPSCs) derived from an antigen-specific cytotoxic T-cell clone, or from T-cell receptor (TCR)-transduced iPSCs, as starting materials. We additionally describe feeder-free differentiation culture systems that span from iPSC maintenance to T-cell proliferation phases, enabling large-scale regenerated T-cell production. Moreover, simultaneous addition of SDF1α and a p38 inhibitor during T-cell differentiation enhances T-cell commitment. The regenerated T-cells show TCR-dependent functions in vitro and are capable of in vivo anti-tumor activity. This system provides a platform to generate a large number of regenerated T-cells for clinical application and investigate human T-cell differentiation and biology

    Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment

    Get PDF
    Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression

    Polymerization of Purified Yeast Septins: Evidence That Organized Filament Arrays May Not Be Required for Septin Function

    Get PDF
    The septins are a family of proteins required for cytokinesis in a number of eukaryotic cell types. In budding yeast, these proteins are thought to be the structural components of a filament system present at the mother–bud neck, called the neck filaments. In this study, we report the isolation of a protein complex containing the yeast septins Cdc3p, Cdc10p, Cdc11p, and Cdc12p that is capable of forming long filaments in vitro. To investigate the relationship between these filaments and the neck filaments, we purified septin complexes from cells deleted for CDC10 or CDC11. These complexes were not capable of the polymerization exhibited by wild-type preparations, and analysis of the neck region by electron microscopy revealed that the cdc10Δ and cdc11Δ cells did not contain detectable neck filaments. These results strengthen the hypothesis that the septins are the major structural components of the neck filaments. Surprisingly, we found that septin dependent processes like cytokinesis and the localization of Bud4p to the neck still occurred in cdc10Δ cells. This suggests that the septins may be able to function in the absence of normal polymerization and the formation of a higher order filament structure

    Comparison of 2D-and 3D-culture models as drug-testing platforms in breast cancer

    Get PDF
    markdownabstract__Abstract__ Multinomial choices of individuals are likely to be correlated. Nonetheless, econometric models for this phenomenon are scarce. A problem of multivariate multinomial choice models is that the number of potential outcomes can become very large which makes parameter interpretation and inference difficult. We propose a novel Multivariate Multinomial Logit specification, where (i) the number of parameters stays limited; (ii) there is a clear interpretation of the parameters in terms of odds ratios; (iii) zero restrictions on parameters result in independence between the multinomial choices and; (iv) parameter inference is feasible using a composite likelihood approach even if the multivariate dimension is large. Finally, these nice properties are also valid in a fixed-effects panel version of the model
    corecore