23 research outputs found

    Integration of Multi-Sensor Data to Estimate Plot-Level Stem Volume Using Machine Learning Algorithms–Case Study of Evergreen Conifer Planted Forests in Japan

    Get PDF
    The development of new methods for estimating precise forest structure parameters is essential for the quantitative evaluation of forest resources. Conventional use of satellite image data, increasing use of terrestrial laser scanning (TLS), and emerging trends in the use of unmanned aerial systems (UASs) highlight the importance of modern technologies in the realm of forest observation. Each technology has different advantages, and this work seeks to incorporate multiple satellite, TLS- and UAS-based remote sensing data sets to improve the ability to estimate forest structure parameters. In this paper, two regression analysis approaches are considered for the estimation: random forest regression (RFR) and support vector regression (SVR). To collect the dependent variable, in situ measurements of individual tree parameters (tree height and diameter at breast height (DBH)) were taken in a Japanese cypress forest using the nondestructive TLS method, which scans the forest to obtain dense and accurate point clouds under the tree canopy. Based on the TLS data, the stem volume was then computed and treated as ground truth information. Topographic and UAS information was then used to calculate various remotely sensed explanatory variables, such as canopy size, canopy cover, and tree height. Canopy cover and canopy shapes were computed via the orthoimages derived from the UAS and watershed segmentation method, respectively. Tree height was computed by combining the digital surface model (DSM) from the UAS and the digital terrain model (DTM) from the TLS data. Topographic variables were computed from the DTM. The backscattering intensity in the satellite imagery was obtained based on L-band (Advanced Land Observing Satellite-2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2)) and C-band (Sentinel-1) synthetic aperture radar (SAR). All satellite (10–25 m resolution), TLS (3.4 mm resolution) and UAS (2.3–4.6 cm resolution) data were then combined, and RFR and SVR were trained; the resulting predictive powers were then compared. The RFR method yielded fitting R2 up to 0.665 and RMSE up to 66.87 m3/ha (rRMSE = 11.95%) depending on the input variables (best result with canopy height, canopy size, canopy cover, and Sentinel-1 data), and the SVR method showed fitting R2 up to 0.519 and RMSE up to 80.12 m3/ha (rRMSE = 12.67%). The RFR outperformed the SVR method, which could delineate the relationship between the variables for better model accuracy. This work has demonstrated that incorporating various remote sensing data to satellite data, especially adding finer resolution data, can provide good estimates of forest parameters at a plot level (10 by 10 m), potentially allowing advancements in precision forestry

    Cellular DBP and E4BP4 proteins are critical for determining the period length of the circadian oscillator

    Get PDF
    AbstractThe phenotypes of mice carrying clock gene mutations have been critical to understanding the mammalian clock function. However, behavior does not necessarily reflect cell-autonomous clock phenotypes, because of the hierarchical dominance of the central clock. We performed cell-based siRNA knockdown and cDNA overexpression and monitored rhythm using bioluminescent reporters of clock genes. We found that knockdown of DBP, D-box positive regulator, in our model led to a short-period phenotype, whereas overexpressing of DBP produced a long-period rhythm when compared to controls. Furthermore, knockdown and overexpressing of E4BP4, D-box negative regulator, led to an opposite effect of DBP. Our experiments demonstrated that D-box regulators play a crucial role in determining the period length of Per1 and Per2 promoter-driven circadian rhythms in Rat-1 fibroblasts

    Drug retention of sarilumab, baricitinib, and tofacitinib in patients with rheumatoid arthritis: the ANSWER cohort study

    Full text link
    Objectives: The aim of this multicenter, retrospective study was to clarify the retention rates of sarilumab (SAR), baricitinib (BAR), and tofacitinib (TOF) in patients with rheumatoid arthritis (RA). Methods: Patients treated with either SAR (n = 62), BAR (n = 166), or TOF (n = 185) (females, 80.9%; age, 61.0 years; disease duration, 11.1 years; rheumatoid factor positivity, 84.4%; Disease Activity Score in 28 joints using erythrocyte sedimentation rate, 4.3; concomitant prednisolone dose, 5.3 mg/day [47.0%] and methotrexate dose, 8.8 mg/week [58.4%]; biologics- or Janus kinase inhibitors-switched cases 78.4%) were included. The reasons for drug discontinuation were classified into 4 major categories (lack of effectiveness, toxic adverse events, non-toxic reasons, and remission) by each attending physician. The drug retention rate was estimated at 18 months using the Kaplan–Meier method and adjusted for potential confounders by Cox proportional hazards modeling. Results: The discontinuation rates of SAR, BAR, and TOF for the corresponding reasons were as follows, respectively: lack of effectiveness (15.7%, 15.6%, and 21.5%; P = 0.84), toxic adverse events (15.8%, 12.1%, and 12.3%; P = 0.35), non-toxic reasons (10.9%, 7.7%, and 6.8%; P = 0.35), and remission (0.0%, 2.8%, and 0.0%; P = 1.0). The overall retention rates excluding non-toxic reasons and remission were as follows: 68.8% for SAR, 72.5% for BAR, and 66.7% for TOF (P = 0.54). Conclusions: After adjustment by potent confounders, SAR, BAR, and TOF showed similar discontinuation rates due to lack of effectiveness and toxic adverse events.Key Points• This is the first retrospective multicenter study that aimed to clarify the retention rates and reasons for discontinuation of SAR, BAR, and TOF in patients with RA.This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s10067-021-05609-7Ebina K., Hirano T., Maeda Y., et al. Drug retention of sarilumab, baricitinib, and tofacitinib in patients with rheumatoid arthritis: the ANSWER cohort study. Clinical Rheumatology 40, 2673 (2021

    Factors affecting drug retention of Janus kinase inhibitors in patients with rheumatoid arthritis: the ANSWER cohort study

    Get PDF
    This multi-center, retrospective study aimed to clarify the factors affecting drug retention of the Janus kinase inhibitors (JAKi) including baricitinib (BAR) and tofacitinib (TOF) in patients with RA. Patients were as follows; females, 80.6%; age, 60.5 years; DAS28-ESR, 4.3; treated with either BAR (n = 166) or TOF (n = 185); bDMARDs- or JAKi-switched cases (76.6%). The reasons for drug discontinuation were classified into four major categories. The drug retention was evaluated at 24 months using the Kaplan–Meier method and multivariate Cox proportional hazards modelling adjusted by confounders. Discontinuation rates for the corresponding reasons were as follows; ineffectiveness (22.3%), toxic adverse events (13.3%), non-toxic reasons (7.2%) and remission (0.0%). Prior history of anti-interleukin-6 receptor antibody (aIL-6R) ineffectiveness significantly increased the risk of treatment discontinuation due to ineffectiveness (p = 0.020). Aging (≥ 75 years) (p = 0.028), usage of PSL ≥ 5 mg/day (p = 0.017) and female sex (p = 0.041) significantly increased the risk of treatment discontinuation due to toxic adverse events. Factors not associated with treatment discontinuation were: number of prior bDMARDs or JAKi, concomitant MTX usage, difference of JAKi, and prior use of TNF inhibitor, CTLA4-Ig or other JAKi.Ebina K., Hirano T., Maeda Y., et al. Factors affecting drug retention of Janus kinase inhibitors in patients with rheumatoid arthritis: the ANSWER cohort study. Scientific Reports 12, 134 (2022); https://doi.org/10.1038/s41598-021-04075-0

    Drug retention of biologics and Janus kinase inhibitors in patients with rheumatoid arthritis: the ANSWER cohort study

    Get PDF
    OBJECTIVES: This multicentre retrospective study in Japan aimed to assess the retention of biological disease-modifying antirheumatic drugs and Janus kinase inhibitors (JAKi), and to clarify the factors affecting their retention in a real-world cohort of patients with rheumatoid arthritis. METHODS: The study included 6666 treatment courses (bDMARD-naïve or JAKi-naïve cases, 55.4%; tumour necrosis factor inhibitors (TNFi) = 3577; anti-interleukin-6 receptor antibodies (aIL-6R) = 1497; cytotoxic T lymphocyte-associated antigen-4-Ig (CTLA4-Ig) = 1139; JAKi=453 cases). The reasons for discontinuation were divided into four categories (ineffectiveness, toxic adverse events, non-toxic reasons and remission); multivariate Cox proportional hazards modelling by potential confounders was used to analyse the HRs of treatment discontinuation. RESULTS: TNFi (HR=1.93, 95% CI: 1.69 to 2.19), CTLA4-Ig (HR=1.42, 95% CI: 1.20 to 1.67) and JAKi (HR=1.29, 95% CI: 1.03 to 1.63) showed a higher discontinuation rate due to ineffectiveness than aIL-6R. TNFi (HR=1.28, 95% CI: 1.05 to 1.56) and aIL-6R (HR=1.27, 95% CI: 1.03 to 1.57) showed a higher discontinuation rate due to toxic adverse events than CTLA4-Ig. Concomitant use of oral glucocorticoids (GCs) at baseline was associated with higher discontinuation rate due to ineffectiveness in TNFi (HR=1.24, 95% CI: 1.09 to 1.41), as well as toxic adverse events in JAKi (HR=2.30, 95% CI: 1.23 to 4.28) and TNFi (HR=1.29, 95%CI: 1.07 to 1.55). CONCLUSIONS: TNFi (HR=1.52, 95% CI: 1.37 to 1.68) and CTLA4-Ig (HR=1.14, 95% CI: 1.00 to 1.30) showed a higher overall drug discontinuation rate, excluding non-toxicity and remission, than aIL-6R.Ebina K., Etani Y., Maeda Y., et al. Drug retention of biologics and Janus kinase inhibitors in patients with rheumatoid arthritis: the ANSWER cohort study. RMD open 9, (2023); https://doi.org/10.1136/rmdopen-2023-003160

    Identification of functional clock-controlled elements involved in differential timing of Per1 and Per2 transcription

    Get PDF
    It has been proposed that robust rhythmic gene expression requires clock-controlled elements (CCEs). Transcription of Per1 was reported to be regulated by the E-box and D-box in conventional reporter assays. However, such experiments are inconclusive in terms of how the CCEs and their combinations determine the phase of the Per1 gene. Whereas the phase of Per2 oscillation was found to be the most delayed among the three Period genes, the phase-delaying regions of the Per2 promoter remain to be determined. We therefore investigated the regulatory mechanism of circadian Per1 and Per2 transcription using an in vitro rhythm oscillation-monitoring system. We found that the copy number of the E-box might play an important role in determining the phase of Per1 oscillation. Based on real-time bioluminescence assays with various promoter constructs, we provide evidence that the non-canonical E-box is involved in the phase delay of Per2 oscillation. Transfection experiments confirmed that the non-canonical E-box could be activated by CLOCK/BMAL1. We also show that the D-box in the third conserved segment of the Per2 promoter generated high amplitude. Our experiments demonstrate that the copy number and various combinations of functional CCEs ultimately led to different circadian phases and amplitudes

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Apex of a V-shaped cut field acts as a pacemaker on an oscillatory system

    Get PDF
    The generation and propagation of chemical waves in the Belousov–Zhabotinsky (BZ) reaction were investigated using a cation-exchange membrane embedded with a metal catalyst as a 2-dimensional oscillatory/active field. We found that a target pattern is generated from the top of a V-shape, indicating that the apex on the boundary between active and passive fields behaves as a pacemaker. A Plausible mechanism for this phenomenon is proposed based on a reaction–diffusion equation

    Observation of Diurnal Ground Surface Changes Due to Freeze-Thaw Action by Real-Time Kinematic Unmanned Aerial Vehicle

    No full text
    Ground surface changes caused by freeze-thaw action affect agriculture and forestry, as well as artificial structures such as roads. In this study, an area is examined in which reforestation is urgently needed but the growth of naturally restored seedlings and planted trees is impaired by freeze-thaw action. Thus, a method of measuring freeze-thaw induced ground surface changes and mitigating their negative impacts is needed. Real-time kinematic unmanned aerial vehicle and structure-from-motion multiview stereophotogrammetry are used on slope-failure sites in forest areas to observe the ground surface changes caused by freeze-thaw action over a wide area, in a nondestructive manner. The slope characteristics influencing the ground-surface changes were examined, and it was confirmed that it is possible to observe minute topographical changes of less than ±5 cm resulting from freeze-thaw action. Statistical models show that the amount of freeze-thaw action is mostly linked to the cumulative solar radiation, daily ground-surface temperature range, and topographic-wetness index, which influence the microscale dynamics of the ground surface. The proposed method will be useful for future quantitative assessments of ground-surface conditions. Further, efficient reforestation could be implemented by considering the effects of the factors identified on the amount of freeze-thaw action
    corecore