3,913 research outputs found

    A CFD-informed quasi-steady model of flapping-wing aerodynamics

    Get PDF
    Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimization is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into quasi-steady forces and parameterized based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power as the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterized on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. This demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned aerial systems

    Efficient calculation of electronic structure using O(N) density functional theory

    Get PDF
    We propose an efficient way to calculate the electronic structure of large systems by combining a large-scale first-principles density functional theory code, Conquest, and an efficient interior eigenproblem solver, the Sakurai-Sugiura method. The electronic Hamiltonian and charge density of large systems are obtained by \conquest and the eigenstates of the Hamiltonians are then obtained by the Sakurai-Sugiura method. Applications to a hydrated DNA system, and adsorbed P2 molecules and Ge hut clusters on large Si substrates demonstrate the applicability of this combination on systems with 10,000+ atoms with high accuracy and efficiency.Comment: Submitted to J. Chem. Theor. Compu

    Undershoot Responses of Circular Path-Following Control for a Vehicle Based on Time-State Control Form

    Get PDF
    ArticleIFAC-PapersOnLine. 54(14): 66-71. (2021)journal articl

    Large-Scale DFT Methods for Calculations of Materials with Complex Structures

    Get PDF
    Large-scale density functional theory (DFT) calculations provide a powerful tool to investigate the atomic and electronic structure of materials with complex structures. This article reviews a large-scale DFT calculation method, the multi-site support function (MSSF) method, in the CONQUEST code. MSSFs are linear combinations of the basis functions which belong to a group of atoms in a local region. The method can reduce the computational time while preserving accuracy. The accuracy of MSSFs has been assessed for bulk Si, Al, Fe and NiO and hydrated DNA, which demonstrate the applicability of the MSSFs for varied materials. The applications of MSSFs on large systems with several thousand atoms, which have complex interfaces and non-periodic structures, indicate that the MSSF method is promising for precise investigations of materials with complex structures
    • …
    corecore