
Efficient calculation of electronic structure

using O(N) density functional theory

Ayako Nakata,∗,† Yasunori Futamura,∗,‡ Tetsuya Sakurai,‡,¶ David R Bowler,§,‖,⊥

and Tsuyoshi Miyazaki†,§

†First-principles Simulation Group, Nano-Theory Field, International Center for Materials

Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki,

Tsukuba, Ibaraki 305-0044, JAPAN

‡Department of Computer Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba,

Ibaraki 305-8573, Japan

¶CREST, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama

332-0012, Japan

§Department of Physics & Astronomy, University College London, Gower St, London

WC1E 6BT, UK

‖WPI-MANA, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba,

Ibaraki 305-0044, Japan

⊥London Centre for Nanotechnology, University College London, 17-19 Gordon Street,

London WC1H 0AH, UK

E-mail: NAKATA.Ayako@nims.go.jp; futamura@cs.tsukuba.ac.jp

Abstract

We propose an efficient way to calculate the electronic structure of large systems by

combining a large-scale first-principles density functional theory code, Conquest, and

an efficient interior eigenproblem solver, the Sakurai–Sugiura method. The electronic
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Hamiltonian and charge density of large systems are obtained by Conquest and the

eigenstates of the Hamiltonians are then obtained by the Sakurai–Sugiura method.

Applications to a hydrated DNA system, and adsorbed P2 molecules and Ge hut clusters

on large Si substrates demonstrate the applicability of this combination on systems with

10,000+ atoms with high accuracy and efficiency.

1 Introduction

First-principles density functional theory (DFT) is a powerful tool to investigate the atomic

and electronic structures of molecules and condensed matter. However, most DFT calcu-

lations to date are limited in the system size which they can treat to about a thousand

atoms, because the computational costs of conventional DFT calculations scale cubically

to the numbers of atoms in target systems, N . This size limitation makes it difficult to

treat complex systems, such as biomolecules, surfaces with defects or dopants with realistic

concentrations, using conventional DFT methods.

In order to overcome this size limitation, we have developed a DFT code for large-scale

systems, Conquest,1–3 which can routinely treat systems with more than 10,000 atoms (and

has been shown to scale to million atom systems3,4). There are two important techniques

to achieve large-scale calculations in Conquest. One is the use of “support functions” to

express Kohn-Sham density matrices:1 these are real-space local orbitals having values only

in finite spatial regions. The electronic Hamiltonian and overlap matrices in this support-

function basis are thus sparse, and calculations with sparse matrices are highly efficiently

parallelized in Conquest.5 The other technique is the linear-scaling, or O(N), method

based on the density matrix minimization (DMM) method.6–9 In this method, the energy is

minimized with respect to an auxiliary density matrix,6 without performing diagonalization.

The range of the auxiliary density matrix is restricted to a finite spatial region, based on the

near-sightedness principle;10 the auxiliary density matrix is thus also sparse and the DMM

calculations scale linearly with N .
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O(N) calculations which work with the density matrix implicitly integrate over energy,

and produce only the sum of the occupied eigenvalues, and not any of the eigenstates, i.e.

the one-electron wavefunctions (molecular orbitals and bands) of the system. We often want

to know the individual eigenstates to analyse the electronic structure of the system, though

generally within a relatively small energy range. These can be found efficiently from the

converged ground-state Hamiltonian.

There are several methods to obtain eigenstates in the interior of the spectrum of a sys-

tem, such as the shift-and-invert Lanczos method,11 the Sakura–Sugiura method,12 and the

FEAST algorithm.13 These methods enable us to avoid full diagonalization of a matrix. The

Sakurai–Sugiura method (SSM) was proposed by Sakurai and Sugiura12 for solving inte-

rior generalized eigenproblems of sparse matrices. Several applications of SSM on electronic

structure calculations have been reported: band structure calculations of a large system con-

taining 10,000 silicon atoms, in conjunction with real-space finite-difference DFT;14 molec-

ular orbital (MO) calculations of biomolecules with the fragment molecular orbital (FMO)

method;15 and core-excited-state calculations using time-dependent DFT.16

The purpose of this study is to present arguments for combining Conquest and SSM.

Conquest and SSM are well matched: the sparse electronic Hamiltonian can be efficiently

constructed by Conquest and interior eigenproblem of this sparse matrix can be solved

efficiently by SSM. In the next section, the theoretical background of Conquest and SSM

are presented. In the third section, we demonstrate that the combination enables us to

investigate the electronic structure of large systems containing several thousand or several

hundred thousand atoms with DFT (hydrated DNA; P2 molecules adsorbed on the Si(100)

surface; and Ge hut clusters formed on the Si(001) surface). The final section gives our

conclusions.
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2 Theoretical background

2.1 Conquest

We briefly explain two key techniques in Conquest, the support functions1 and the O(N)

method,6–9 to give context to the combination of Conquest with SSM.

2.1.1 Support functions

In DFT, the Kohn-Sham (KS) density matrix ρ is expressed as

ρ(r, r′) =
∑
n

fnψn(r)ψn(r′)∗, (1)

where ψn and fn are nth KS orbital and its occupation number, respectively. This would

necessitate cubic scaling, so instead, in Conquest, ρ is expanded using the support functions

φ:

ρ(r, r′) =
∑
iα,jβ

φiα(r)Kiα,jβφjβ(r′)∗. (2)

Here, K is the density matrix in the support function basis, and i, j and α, β are the indices

of atoms and support functions, respectively.

Support functions are constructed as linear combinations of given basis functions χ.

Conquest supports two kinds of basis functions, B-spline (blip) finite element functions17

and pseudo atomic orbitals (PAO).18 The use of blip functions enables us to improve the

accuracy systematically by decreasing the width and the grid spacing of the functions, with

the grid spacing being directly equivalent to a plane-wave cutoff. The PAOs are atomic-

orbital basis functions found from the pseudo-potentials and consist of radial functions (ξ)

multiplied by spherical harmonic functions.19,20 Although the systematic improvement of the

basis set completeness for PAOs is not straightforward, it can be improved by increasing the

number of radial functions for each spherical harmonic (i.e., multiple-ξ functions) as well as

adding extra angular momentum shells. The computational cost of minimisation with PAOs
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is at present much lower than that with blip basis functions.

Since PAOs are intrinsically localized around atoms, we can use them as support functions

without modification, which we call “primitive” support functions. On the other hand, we

often contract the PAOs by taking linear combinations in order to reduce the number of

support functions, because the computational cost increases cubically with the number of

support functions per atom in Conquest, even with the O(N) method. Conventionally, we

take a linear combination of PAOs on each atom,

φiα(r) =
∑
µ

ciα,iµχiµ(r), (3)

where c are the linear-combination coefficients and χiµ is the µth PAO on atom i. c is then

optimized for all atoms in the target system. A similar contraction method was reported by

Ozaki and Kino.21,22 Since the linear combinations are taken only over the PAOs which are

centred at the target atom, the contracted “single-site” functions have to keep the point-group

symmetry of the target atom.18

We have recently proposed “multi-site” support functions (MSSFs),23,24 which are linear

combinations of PAOs on the target atom and its neighbouring atoms in a finite region (rMS):

φiα(r) =

neighbers∑
k

∑
µ∈k

Ciα,kµχkµ(r), (4)

where k runs over the neighbouring atoms of atom i within the region rMS. The coefficients

C are optimized numerically.24 The initial values of C are found as localized occupied MOs

using the local filter diagonalization (LFD) method.23,25,26 Because MSSFs are localised MO-

like functions, we can use a number of MSSFs equivalent to a minimal basis. Therefore,

by determining C with the LFD method and subsequently by the numerical optimization,

the MSSFs can reproduce the results of the primitive functions with high accuracy while

significantly reducing the computational cost.

Because the PAOs are localized functions which are restricted to finite spatial regions,19
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the support functions constructed from PAOS are also localized. Although more delocalized

than single-site support functions, MSSFs are still localized within the region (rPAO + rMS).

Therefore, the Hamiltonian and overlap matrices in the support-function basis are always

sparse.

2.1.2 O(N) calculations with DMM

Conquest supports two methods to optimize the electronic states: conventional diagonal-

ization method, scaling as O(N3) and the DMM method, scaling as O(N). In the diagonal-

ization method, the density matrix K in (2) is obtained as the sum of the outer products of

the eigenvectors of the electronic Hamiltonian H. On the other hand, in the DMM calcula-

tions, K is found by optimizing the energy with respect to an auxiliary density matrix L. L

is introduced to guarantee the weak idempotency of K:1,8,9

K = 3LSL− 2LSLSL, (5)

where S is the overlap matrix between support functions. The partial derivative of the total

energy with respect to L1 is:

∂Etot

∂Lαβ
= [6(SLH +HLS)βα

−4(SLSLH + SLHLS +HLSLS)βα]. (6)

The energy minimization is performed with the following restriction:

Liα,jβ = 0, |Ri −Rj| > rL, (7)

where rL corresponds to a chosen cutoff radius. This restriction is supported by Kohn’s “near-

sightedness” principle.10 The effect of equation (7) is to make L a localized, and thus sparse,

matrix. Thus, all of the matrices in eq. (6) are sparse so that the matrix multiplications
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in eq. (6) can be performed with O(N) scaling. The total energy obtained by the O(N)

method with rL =∞ should be equal to the one obtained by diagonalization with infinitely

fine Brillouin zone sampling.

Since diagonalization is not used to solve eq. (6), no eigenstates of the electronic Hamilto-

nian are calculated during the O(N) calculation. It is usually difficult to apply conventional

eigenproblem solvers to large-scale systems; however, in most practical applications, once

the Hamiltonian is optimized, only a small number of eigenstates in a given energy region

of interest are required. Any eigenstate can be found in linear scaling time (as the num-

ber of basis set coefficients per eigenstate scales linearly with system size). Therefore, an

efficient approach to eigenstate solution such as SSM, is an ideal choice to pair with O(N)

calculations in Conquest.

2.2 Sakurai–Sugiura method

We now turn to a brief presentation of the Sakurai-Sugiura method. SSM is an eigenvalue

solver which computes eigenvalues located in a specified contour path Γ on the complex

plane and their associated eigenvectors. Variants of the method using the Rayleigh–Ritz

procedure27 and block versions28,29 of the method have been proposed. In this paper, we

refer to these variants as the Sakurai–Sugiura method.

We denote the dimension of H and S as n. The key part of SSM is a set of M complex

moments found as contour integrals over the contour Γ:

Wk :=
1

2πi

∮
Γ

zk(zS −H)−1SV dz, (8)

where V is an n × Ls random real matrix whose column vectors are linearly independent,

Ls is greater than or equal to the maximum multiplicity of the eigenvalues inside Γ and

k varies between 0 and M − 1 so that W := [W0,W1, . . . ,WM−1]. By Cauchy’s integral

theorem, the column vectors ofW become linear combinations of eigenvectors corresponding
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to the eigenvalues located within Γ; we write mΓ as the number of eigenvalues (including

multiplicity) inside Γ. Then W spans the same space as the eigen-subspace associated with

the eigenvalues inside Γ, provided that LsM ≥ mΓ. Either using the Rayleigh–Ritz procedure

for Range(W ), or solving a small generalized eigenvalue problem of block Hankel matrices

consist of (SV )TWk (k = 0, 1, . . . , 2M −1), we can compute all the eigenvalues within Γ and

their corresponding eigenvectors.

In order to approximate the contour integral eq. (8), we apply numerical quadrature:

Ŵk ≈ Wk =

Nq∑
j=1

wjζ
k
j (zjS −H)−1SV, (9)

where Nq is the number of quadrature points, zj is a quadrature point, wj is a quadrature

weight. The normalized quadrature point ζj is used instead of zj in the k-th order calculation

of eq. (9) for numerical stability. We define ζj = (zj − γs)/ρs with real scalars γs and ρs > 0.

For instance, when Γ is a circle, γs and ρs are the center and radius of the circle, respectively.

In SSM, we need to solve linear systems (with multiple right-hand sides)

(zjS −H)Yj = SV (j = 1, 2, . . . , Nq) (10)

for computing Ŵk.

There are three levels of parallelism in the SSM algorithm. First, eq. (10) can be solved

independently for each value of j. Second, each of these linear systems can be solved in

a distributed manner. Finally, we can divide the energy range of interest into multiple

regions, and the eigenvalues in each region can be computed in parallel. More details for the

implementation and an efficient way of setting the parameters of SSM are described in Ref.

30.
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3 Practical applications

In order to demonstrate the usefulness of the present combination of Conquest and SSM,

we results from calculations on three systems: a hydrated DNA system; P2 molecules ad-

sorbed on the Si(100) surface; and Ge hut clusters on the Si(001) surface. Since the hydrated

DNA system and P2 on Si(100), which consist of several thousand atoms, can be treated with

conventional diagonalization when using MSSFs, the SCF calculations in Conquest were

performed with diagonalization in these cases, allowing us to check the accuracy of the results

from the SSM. For Ge clusters on Si surfaces, which consist of 10,000+ atoms, structural

optimisation was performed with non-self-consistentO(N) calculations, leading to the Hamil-

tonian for the relaxed system. In the Conquest calculations, PBE96 generalized-gradient-

approximation (GGA) exchange-correlation functional31 and PAOs with norm-conserving

pseudo potentials, which were generated with the SIESTA code,20 were used.

3.1 Hydrated DNA

First, we investigate the accuracy of SSM by comparing with results from exact diagonalisa-

tion, using the ScaLAPACK routine PDSYGV on the Conquest matrices. We calculated

the eigenstates of a hydrated DNA system, the B-DNA decamer 5’-d(CCATTAATGG)2-3’

which contains 634 atoms in the DNA with 932 hydrating water molecules and 9 Mg counter

ions, totalling 3,439 atoms. More detailed information for the geometry used is given in Ref.

32. In Conquest, the electronic structure of the system was optimized self-consistently

with the MSSFs (rMS = 8.0 bohr). For C, N, O and P atoms, DZP (2s2p1d) PAOs33 were

contracted into four support functions using the most delocalized s and p PAOs as trial

vectors. For H and Mg, DZP (2s1p) PAOs33 were contracted to one MSSF using the most

delocalized s PAOs as trial vectors. The dimension of the Hamiltonian is reduced from 27,883

with DZP PAOs to 4,774 with MSSFs. The eigenvalues and eigenvectors of the optimized

Hamiltonian were obtained by both SSM and the ScaLAPACK routine to investigate both
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the efficiency and accuracy of SSM. In the SSM calculation, we calculated the eigenstates

in the energy range [-0.4:0.4] Hartree with an interval of 0.01 Hartree, giving 6093 states in

total. The parameters Nq (number of quadrature points), M (number of complex moments),

and Ls (number of columns of the source matrix) are set to 16, 8 and 64, respectively.

Table 1 and Figure 1 shows the calculated eigenvalues and eigenvectors around the Fermi

level (-0.215 eV), which correspond to the energies and charge distributions of eight MOs

around the HOMO-LUMO gap. Table 1 shows that the difference in eigenvalues calculated by

SSM and those by Scalapack are negligibly small, less than 10−9 eV. The calculated HOMO-

LUMO gap is 2.16 eV, which is smaller than typically-reported values for DNA systems

(about 3 - 4 eV34). This underestimation is likely due to the use of a GGA functional.

Table 1: Calculated eigenvalues of hydrated DNA systems [eV].

SSM Scalapack
HOMO-3 -1.7330847154 -1.7330847153
HOMO-2 -1.5343553564 -1.5343553563
HOMO-1 -1.4458947736 -1.4458947736
HOMO -1.2563299881 -1.2563299879
LUMO 0.9071560149 0.9071560148
LUMO+1 0.9438977187 0.9438977188
LUMO+2 0.9673219957 0.9673219956
LUMO+3 0.9725452608 0.9725452608
HOMO-LUMO gap 2.1634860030 2.1634860027

We can also see that the molecular orbitals (MOs) calculated by SSM and Scalapack

are very similar to each other in Figure 1. The figure clearly shows that the MOs of the

hydrated DNA system around the HOMO-LUMO gap are quite localized. We suggest that

the present method (i.e. the combination of Conquest and SSM) can be a powerful tool

to investigate charge-transfer properties of DNA systems.

We also investigate the ability of the present method to improve the accuracy of the

unoccupied states calculated with MSSFs. Figure 2 shows the density of states (DOS) of the

hydrated DNA system calculated with the MSSFs (blue line in Figure 2a). The results with

the primitive DZP PAOs (Figure 2b) are also shown for comparison. The difference between
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Figure 1: Molecular orbital pictures of the hydrated DNA calculated by (a) full diagonaliza-
tion by Scalapack and (b) Sakurai-Sugiura method.

these results is shown in Figure 2c with the blue line, where it can clearly be seen that the

difference in the occupied states is very small (the fractional difference is around 0.001) but

the difference becomes larger in higher-lying unoccupied states, as already reported in Ref.

23,24. This low accuracy in unoccupied states comes from the minimal size of the MSSF

basis, and the optimisation process, which only accounts for the occupied states. This error

will be critical when we consider properties related to the unoccupied states such as excitation

energies, although for most calculations it is only the accuracy of the occupied states that is

important.

Figure 2: Density of states of hydrated DNA obtained with (a) multi-site support functions
(MSSF) (blue) and DZP PAOs using MSSF charge density (red) and (b) DZP PAOs using
DZP SCF charge density (black). rMS is set to be 8.0 bohr. The difference of (a) MSSF
(blue) and DZP with the MSSF density (red) from (b) DZP is also shown in (c).

The accuracy of the unoccupied states can be improved by the following procedure: (i)

optimize the charge density by SCF calculations with MSSFs; (ii) build the Hamiltonian
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using the primitive PAO basis, but with the optimized MSSF charge densities; and (iii) per-

form one-shot SS calculations to obtain the eigenvalues and eigenstates of the Hamiltonians.

Because the dimension of the reconstructed Hamiltonian in the primitive PAO basis is much

larger (27,883 for the DNA system) than the Hamiltonian in MSSF basis (7,447), diagonal-

ization in the primitive PAO basis is often difficult even if is possible in the MSSF basis.

The use of SSM (procedure (iii)) can then solve this problem. In Figure 2 we also show the

reconstructed results: the red line in Figure 2a) is very similar to that of the primitive PAOs

(Figure 2b). Figure 2c shows the difference from the primitive PAO results, which is almost

zero throughout the eigenspectrum.

3.2 P2 molecules on Si(100) surfaces

In this section, we demonstrate STM simulations of large Si(100) surface samples with ad-

sorbed P2 molecules. Simulations of STM images and STS spectra based on DFT calculations

have an important role to play in understanding the atomic and electronic structure of sur-

faces and adsorbates, particularly in collaboration with experiments. In these simulations,

we need only the eigenstates in limited energy regions around the Fermi levels because STM

and STS measurements are only consider biases up to a few eV. However, due to the limita-

tion of the system size in DFT simulations, it has until now been difficult to treat large and

complex surface structures.

P2 molecules adsorbed on Si(001) tend to form two key structures, either bridging two

Si dimers along the Si dimer row (P2(I)), or just above a Si dimer (P2(II)).35 We modelled

the P2(I) and P2(II) structures on large areas substrate, with ten layers of silicon, each layer

consisting of 8 dimer rows each containing 16 Si dimers. The lowest layer is terminated with

H atoms. Thus, each system consists in total of 3,074 atoms (2,560 Si, 512 H and 2 P atoms).

The geometry was optimized by fixing the bottom two Si layers and H atoms. The MSSFs

(rMS = 17.0 bohr) were used for the optimization. For Si and P atoms, four MSSFs are

constructed from TZDP (3s3p2d) PAOs36 using the most delocalized s and p PAOs as trial
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vectors. The MSSFs for H atoms were constructed from DZP PAOs33 as in Section 3.1. The

optimized geometries are shown in Figure 3(a). As reported in Ref. 35, P2(I) is calculated

to be more stable than P2(II) (by 0.92 eV in the present calculations).

In order to obtain the theoretical STM images corresponding to the experimental re-

sults,35 the eigenvectors only in the regions of the experimental sample biases, -1.5 eV and

+1.4 eV, are required. Therefore, we calculated the eigenstates from -1.5 eV to +1.4 eV

around the Fermi energy (eF) with SSM. STM images were generated using the Tersoff-

Hamann approach.37 In order to improve the accuracy of the unoccupied states, as in Sec-

tion 3.1, we reconstructed the Hamiltonians in primitive DZP PAO basis with the MSSF

charge densities, and obtained the eigenstates by SSM subsequently. Figures 3(b) and 3(c)

present the theoretical STM images corresponding to the sample biases -1.5 eV and +1.4

eV, which reproduce the experimental images35 very well. We would like to emphasise that

only about 800 eigenstates in the interval [eF − 1.5 eV: eF + 1.4 eV] were needed (precisely,

776 states for P2(I) and 778 states for P2(II)), instead of the whole 58,924 eigenstates of the

Hamiltonian which would have been required by conventional full diagonalization. These re-

sults suggest that our method will enable us to simulate the electronic structure of complex

surfaces containing dopants and defects with realistic concentrations.

Table 2: Comparison of the computation times (in second) of ScaLAPACK’s PDSYGVX
and SSM for the P2 on Si(001) system. np indicates the number of computational nodes.

np 4 8 16 32 64
PDSYGVX 5,064 3,032 1,591 1,043 629
SSM 924 469 239 134 85

It is also instructive to compare the computation time for SSM and ScaLAPACK’s

PDSYGVX subroutine for the system P2(I). The computational environment used for this

test was the supercomputer COMA (PACS-IX) at University of Tsukuba. Each node has

Two Intel Xeon E5-2670v2 CPUs, each with 10 cores, and a clock frequency of 2.5 GHz.

While COMA has Intel Xeon Phi accelerators, we used only the CPUs for the performance

evaluation. For the parameters of SSM, we set Nq = 16, M = 8, and Ls = 100. We di-
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Figure 3: P2 molecules on Si(100) surfaces: (a) Top and side views of the optimized geome-
tries (Si, P and H atoms are colored in black, grey and light grey), (b) STM images at biases
-1.5 eV and (c) STM images at biases +1.4 eV.
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vided the interval into four equal parts. For the numerical quadrature, we used Chebyshev

points in the interval [−1, 1] for ζj and the associated barycentric weights for wj in the way

presented in Ref. 38. We set γs and ρs as the center and half width of the target energy

range. As the setting of multi-processing for SSM, we run four MPI processes per node and

use five OpenMP threads per MPI process. For PDSYGVX, we run one MPI processes per

node and use 20 OpenMP threads per MPI process. Table 2 shows the comparison of the

computational times with SSM and PDSYGVX subroutine. The table indicates that for all

cases, SSM is at least five times faster than PDSYGVX, and more than seven times faster

for 32 and 64 nodes. This significant speedup comes from the high parallel efficiency of SSM,

which takes advantage of the sparsity of the matrices.

3.3 Ge hut clusters on Si(001) surfaces

Finally in this section, we consider systems that are out of reach of conventional DFT

methods: Ge hut clusters on the Si(001) surfaces (Ge/Si(001)) consisting of (a) 23,737 and

(b) 194,573 atoms. The optimized geometry of system (a) is shown in Figure 4. 8×13

and 20×30 Ge hut-shaped clusters were placed on 14×19 and 29×39 SiGe substrates in

systems (a) and (b), respectively. The dimensions of H and S matrices for system (a) and

(b) are 213,633 and 1,751,157 with SZP PAOs. These dimensions are beyond what could be

addressed with conventional exact diagonalization. The geometry optimization of systems (a)

and (b) was perforemd with our O(N) method; the detail of the geometry optimizations will

be given in a forthcoming paper.39 We used the PZ81 LDA exchange-correlation functional40

and SZP PAOs.41

By combining Conquest and SSM, we can now explore not just the atomic structure

but also the electronic structure of these systems. Figure 4(b) shows the sum of eigenstates

in the energy window [-0.01:+0.02] eV around Fermi level (summation of 43 bands). From

the figure we can see that the electronic charge around the Fermi level is localized at the

surface of the Ge hut cluster. Although the detailed discussion of the atomic and electronic
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Figure 4: Top and side views of the optimized geometry of the Ge hut clusters on the Si(001)
(23,737 atoms).

structures of the systems, which will be investigated in a future publication,39 goes beyond

the purpose of this paper, the result is promising as an example of the electronic structure

of one of the largest systems treated by first-principle DFT calculations.

To indicate the computation time required, we show the time for SSM calculations on

both systems (a) and (b) in Table 3. For the parameters of SSM, we set Nq = 16,M = 8, and

Ls = 64. We used the K computer at RIKEN Advanced Institute for Computational Science.

The K computer has SPARC64TM VIIIfx CPUs, with eight cores per compute node. We

used 64 nodes and 6400 nodes of the K computer for systems (a) and (b), respectively. We

run four MPI processes per node and use 8 OpenMP threads per MPI process.

Table 3: The computation times of SSM for Ge hut cluster systems (a) and (b). np indicates
the number of computational nodes.

# of atoms np Time [sec]
System (a) 23,737 64 146
System (b) 194,573 6,400 2,399
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Figure 5: Top and side views of the electronic density distributions of the Ge hut clusters
on the Si(001) (23,737 atoms) around Fermi level.

4 Conclusions

We have shown that the combination of Conquest and the Sakurai-Sugiura method (SSM)

is a powerful tool to analyze the electronic structure of very large systems. Conquest can

perform self-consistent energy minimization and geometry optimization of very large systems

based on first-principles DFT by using local orbital (support) functions and a linear-scaling

method. The use of the support functions makes the overlap and electronic Hamiltonian

matrices sparse. The recently-developed multi-site support function method enables us to

reduce the number of support functions to a minimal basis set. However, there are two key

problems in analyzing the electronic structure of large systems with Conquest: the multi-

site support function method gives high accuracy for occupied states but not for unoccupied

states; and the linear-scaling method in Conquest does not provide the eigenvalues or

eigenstates of the Hamiltonian. SSM is a method to solve interior eigenproblems of large

sparse matrices. SSM can provide the eigenvalues and eigenvectors in a finite eigenvalue

range using contour integrals in complex planes, without performing diagonalization. The

combination of these methods is a powerful new tool.
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We have shown that: i) the combined method is perfectly accurate in the case of a hy-

drated DNA system; ii) the accuracy of the unoccupied states found with multi-site support

functions can be greatly improved; and iii) the method can be used to perform STM and

STS simulations of complex surface structures such as P2 molecules on Si(001). We have also

shown that we can analyse the electronic structure of systems over 10,000 atoms, considering

two Ge hut clusters on Si(001) surfaces with 23, 737 and 194, 573 atoms.

Our new method enables us to analyze the atomic and electronic structure of very large

systems accurately and efficiently.
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