75 research outputs found

    Identification of trehalose dimycolate (cord factor) in Mycobacterium leprae

    Get PDF
    AbstractGlycolipids of Mycobacterium leprae obtained from armadillo tissue nodules infected with the bacteria were analyzed. Mass spectrometric analysis of the glycolipids indicated the presence of trehalose 6,6′-dimycolate (TDM) together with trehalose 6-monomycolate (TMM) and phenolic glycolipid-I (PGL-I). The analysis showed that M. leprae-derived TDM and TMM possessed both α- and keto-mycolates centering at C78 in the former and at C81 or 83 in the latter subclasses, respectively. For the first time, MALDI-TOF mass analyses showed the presence of TDM in M. leprae

    Serum Antibody Against NY-ESO-1 and XAGE1 Antigens Potentially Predicts Clinical Responses to Anti–Programmed Cell Death-1 Therapy in NSCLC

    Get PDF
    Introduction: Programmed cell death-1 (PD-1) inhibitors effectively treat NSCLC and prolong survival. Robust biomarkers for predicting clinical benefits of good response and long survival with anti-PD-1 therapy have yet to be identified; therefore, predictive biomarkers are needed to select patients with benefits. Methods: We conducted a prospective study to explore whether serum antibody against NY-ESO-1 and/or XAGE1 cancer-testis antigens predicted primarily good clinical response and secondarily long survival with anti-PD-1 therapy for NSCLC. The serum antibody was detected by enzyme-linked immunosorbent assay, and tumor immune microenvironment and mutation burden were analyzed by immunohistochemistry and next-generation sequencing. Results: In the discovery cohort (n = 13), six antibody-positive NSCLC cases responded to anti-PD-1 therapy (two complete and four partial responses), whereas seven antibody-negative NSCLC cases did not. Antibody positivity was associated with good response and survival, regardless of tumor programmed death ligand 1 (PD-L1) expression, mutation burden, and CD8+ T-cell infiltration. In the validation cohort (n = 75), 17 antibody-positive NSCLC cases responded well to anti-PD-1 therapy as compared with 58 negative NSCLC cases (objective response rate 65% versus 19%, p = 0.0006) and showed significantly prolonged progression-free survival and overall survival. Antibody titers highly correlated with tumor reduction rates. In the multivariate analysis, response biomarkers were tumor programmed death ligand 1 expression and antibody positivity, and only antibody positivity was a significantly better predictive biomarker of progression-free survival (hazard ratio = 0.4, p = 0.01) and overall survival (hazard ratio = 0.2, p = 0.004). Conclusions: Our results suggest that NY-ESO-1 and/or XAGE1 serum antibodies are useful biomarkers for predicting clinical benefits in anti-PD-1 therapy for NSCLC and probably for other cancers

    Cytokeratin 13, Cytokeratin 17, and Ki-67 Expression in Human Acquired Cholesteatoma and Their Correlation With Its Destructive Capacity

    Get PDF
    Objectives Cholesteatoma is a nonneoplastic destructive lesion of the temporal bone with debated pathogenesis and bone resorptive mechanism. Both molecular and cellular events chiefly master its activity. Continued research is necessary to clarify factors related to its aggressiveness. We aimed to investigate the expression of Ki-67, cytokeratin 13 (CK13) and cytokeratin 17 (CK17) in acquired nonrecurrent human cholesteatoma and correlate them with its bone destructive capacity. Methods A prospective quantitative immunohistochemical study was carried out using fresh acquired cholesteatoma tissues (n=19), collected during cholesteatoma surgery. Deep meatal skin tissues from the same patients were used as control (n=8). Cholesteatoma patients were divided into 2 groups and compared (invasive and noninvasive) according to a grading score for bone resorption based upon clinical, radiologic and intraoperative findings. To our knowledge, the role of CK17 in cholesteatoma aggressiveness was first investigated in this paper. Results Both Ki-67 and CK17 were significantly overexpressed in cholesteatoma than control tissues (P<0.001 for both Ki-67 and CK17). In addition, Ki-67 and CK17 were significantly higher in the invasive group than noninvasive group of cholesteatoma (P=0.029, P=0.033, respectively). Furthermore, Ki-67 and CK17 showed a moderate positive correlation with bone erosion scores (r=0.547, P=0.015 and r=0.588, P=0.008, respectively). In terms of CK13, no significant difference was found between cholesteatoma and skin (P=0.766). Conclusion Both Ki-67 and CK17 were overexpressed in cholesteatoma tissue and positively correlated with bone resorption activity. The concept that Ki-67 can be a predictor for aggressiveness of cholesteatoma was supported. In addition, this is the first study demonstrating CK17 as a favoring marker in the aggressiveness of acquired cholesteatoma
    corecore