6,152 research outputs found

    Nuclear radiation problems, unmanned thermionic reactor ion propulsion spacecraft

    Get PDF
    A nuclear thermionic reactor as the electric power source for an electric propulsion spacecraft introduces a nuclear radiation environment that affects the spacecraft configuration, the use and location of electrical insulators and the science experiments. The spacecraft is conceptually configured to minimize the nuclear shield weight by: (1) a large length to diameter spacecraft; (2) eliminating piping penetrations through the shield; and (3) using the mercury propellant as gamma shield. Since the alumina material is damaged by the high nuclear radiation environment in the reactor it is desirable to locate the alumina insulator outside the reflector or develop a more radiation resistant insulator

    Correlation between Infrared Colors and Intensity Ratios of SiO Maser Lines

    Full text link
    We present the results of SiO millimeter-line observations of a sample of known SiO maser sources covering a wide dust-temperature range. A cold part of the sample was selected from the SiO maser sources found in our recent SiO maser survey of cold dusty objects. The aim of the present research is to investigate the causes of the correlation between infrared colors and SiO maser intensity ratios among different transition lines. In particular, the correlation between infrared colors and SiO maser intensity ratio among the J=1-0 v=1, 2, and 3 lines are mainly concerned in this paper. We observed in total 75 SiO maser sources with the Nobeyama 45m telescope quasi-simultaneously in the SiO J=1-0 v=0, 1, 2, 3, 4 and J=2-1 v=1, 2 lines. We also observed the sample in the 29SiO J=1-0 v=0 and J=2-1 v=0, and 30SiO J=1-0 v=0 lines, and the H2O 6(1,6)-5(2,3) line. As reported in previous papers, we confirmed that the intensity ratios of the SiO J=1-0 v=2 to v=1 lines clearly correlate with infrared colors. In addition, we found possible correlation between infrared colors and the intensity ratios of the SiO J=1-0 v=3 to v=1&2 lines. Two overlap lines of H2O (i.e., 11(6,6) nu_2=1 -> 12(7,5) nu_2=0 and 5(0,5) nu_2=2 -> 6(3,4) nu_2=1) might explain these correlation if these overlap lines become stronger with increase of infrared colors, although the phenomena also might be explained by more fundamental ways if we take into account the variation of opacity from object to object.Comment: 49 pages, 7 figures, 3 tables, accepted for publication in ApJ. Full resolution version available at http://www.asiaa.sinica.edu.tw/~junichi/paper

    BIMA CO Observation of EP Aqr the Semiregular Pulsating Star with a Double Component Line Profile

    Full text link
    This paper reports the results of a Berkeley-Illinois-Maryland array interferometric observation of EP Aqr, a semiregular pulsating star with a double component line profile in the CO J=1-0 line. The broad component shows a flat-top profile, and the narrow component shows a spiky strong peak. Though the previous single dish observations suggested that the CO J=2-1 line exhibits a Gaussian-like profile, the CO J=1-0 line does not. The spatial distributions of both the narrow and broad components appears to be roughly round with the same peak positions. No significant velocity gradient is seen. The spatial-kinetic properties of the molecular envelope of EP Aqr are reminiscent of a multiple shell structure model rather than a bipolar flow and disk model. A problem of this interpretation is that no evidence of interaction between the narrow and broad component regions is seen. A Gaussian-like feature seen in the CO J=2-1 line might play a key role to understand the spatio-kinetic properties of the molecular envelope of EP Aqr.Comment: 10 pages, 3 figures; accepted for publication in Ap

    Disk-Like Structure in the Semi-Regular Pulsating Star, X Her

    Get PDF
    The author reports a result of an interferometric observation of the semiragular pulsating star with an unusual narrow molecular line profile, X Her, in the CO J=1-0 line with the Berkeley-Illinois-Maryland array. In the CO spectrum, a double-component profile (including narrow and broad components) is seen as reported by previous observations. The narrow component consists of two spiky peaks. The spatial structure of the board component shows bipolar shape, and that of the narrow component shows an elliptical/spherical shape. The two peaks in the narrow component show a systematic difference in the integrated intensity map. The kinematical and geometrical properties of the narrow component are reminiscent of a Keplerian rotating disk with the central mass of 0.9 M_sun, though an interpretation by an expansion disk seems to be more natural. A secondary bipolar flow instead of the disk cannot be fully excluded as an interpretation of the narrow line.Comment: 12 pages, 4 figues, accepted for publication in Ap

    Prolific pair production with high-power lasers

    Full text link
    Prolific electron-positron pair production is possible at laser intensities approaching 10^{24} W/cm^2 at a wavelength of 1 micron. An analysis of electron trajectories and interactions at the nodes (B=0) of two counter-propagating, circularly polarised laser beams shows that a cascade of gamma-rays and pairs develops. The geometry is generalised qualitatively to linear polarisation and laser beams incident on a solid target.Comment: 4 pages, 1 figure, minor revisions, accepted for publication in Physical Review Letter

    The Music of the Aetherwave - B-mode Polarization in Einstein-Aether Theory

    Full text link
    We study how the dynamical vector degree of freedom in modified gravity affects the CMB B-mode polarization in terms of the Einstein-aether theory. In this theory, vector perturbations can be generated from inflation, which can grow on superhorizon scales in the subsequent epochs and thereby leaves imprints on the CMB B-mode polarization. We derive the linear perturbation equations in a covariant formalism, and compute the CMB B-mode polarization using the CAMB code modified so as to incorporate the effect of the aether vector field. We find that the amplitude of the B-mode signal from the aether field can surpass the contribution from the inflationary gravitational waves for a viable range of model parameters. We also give an analytic argument explaining the shape of the spectrum based on the tight coupling approximation.Comment: 12 pages, 6 figure
    corecore