43 research outputs found

    Emerging Roles of Neuronal Ca2+ Sensor-1 in Cardiac and Neuronal Tissues: A Mini Review

    Get PDF
    The EF-hand calcium (Ca2+)-binding protein, neuronal Ca2+ sensor-1 (NCS-1/frequenin), is predominantly expressed in neuronal tissues and plays a crucial role in neuronal functions, including synaptic transmission and plasticity. NCS-1 has diverse functional roles, as elucidated in the past 15 years, which include the regulation of phosphatidylinositol 4-kinase IIIβ (PI-4K-β) and several ion channels such as voltage-gated K+ and Ca2+ channels, the D2 dopamine receptors, and inositol 1,4,5-trisphosphate receptors (InsP3Rs). Functional analyses demonstrated that NCS-1 enhances exocytosis and neuronal survival after injury, as well as promotes learning and memory in mice. NCS-1 is also expressed in the heart including the Purkinje fibers (PFs) of the conduction system. NCS-1 interacts with KV4 K+ channels together with dipeptidyl peptidase-like protein-6 (DPP-6), and this macromolecule then composes the transient outward current in PFs and contributes to the repolarization of PF action potential, thus being responsible for idiopathic arrhythmia. Moreover, NCS-1 expression was reported to be significantly high at the immature stage and at hypertrophy in adults. That report demonstrated that NCS-1 positively regulates cardiac contraction in immature hearts by increasing intracellular Ca2+ signals through interaction with InsP3Rs. With the related signals, NCS-1 activates nuclear Ca2+ signals, which would be a mechanism underlying hormone-induced cardiac hypertrophy. Furthermore, NCS-1 contributes to stress tolerance in cardiomyocytes by activating mitochondrial detoxification pathways, with a key role in Ca2+-dependent pathways. In this review, we will discuss recent findings supporting the functional significance of NCS-1 in the brain and heart and will address possible underlying molecular mechanisms

    Successful treatment of Trichosporon fungemia in a patient with refractory acute myeloid leukemia using voriconazole combined with liposomal amphotericin B

    Get PDF
    Trichosporon fungemia is a rare and fatal fungal infection that occurs in patients with prolonged neutropenia associated with hematologic malignancies. A 21-year-old male developed Trichosporon fungemia during remission induction therapy for acute myeloid leukemia (AML). Although two courses of induction therapy failed to induce a remission of AML, combination therapy with voriconazole and liposomal amphotericin B (L-AmB) followed by monocyte colony-stimulating factor ameliorated the Trichosporon fungemia and enabled the patient to receive reduced-intensity bone marrow transplantation (BMT) from his human leukocyte antigen-A one-locus mismatched mother. The patient achieved a durable remission after BMT without exacerbation of Trichosporon fungemia. The combination therapy with voriconazole and L-AmB may therefore be useful in controlling Trichosporon fungemia associated with prolonged neutropenia after remission induction therapy for AML

    Inhibitory Effects of the Heat-Killed Lactic Acid Bacterium Enterococcus faecalis on the Growth of Porphyromonas gingivalis

    No full text
    ABSTRACT: Background: Porphyromonas gingivalis, a gram-negative obligate anaerobic bacterium, is a major pathogen involved in the onset and progression of periodontal disease, a chronic inflammatory disorder observed in approximately two-thirds of the Japanese population older than age 30 years. P gingivalis cells produce and secrete gingipain, a powerful proteolytic enzyme, on their surfaces and in external environments. Objectives: The effects of heat-killed Enterococcus faecalis (HkEf), a lactic acid bacterium, on the growth of P gingivalis were evaluated in vitro by measuring the viable cell count of P gingivalis and gingipain activity. Methods: HkEf solution (1.63 or 163 mg/mL) was added to 1 mL P gingivalis culture to generate a final HkEf concentration of 0.64 or 64 mg/mL. The cultures were incubated anaerobically. The number of viable P gingivalis cells and gingipain activity were measured after incubation for 0, 12, 24, 48, and 72 hours. The number of viable P gingivalis cells was calculated by counting the number of colonies after culture. Gingipain activity was quantified by adding a chromogenic substrate to P gingivalis culture medium and measuring the absorbance of the reaction solution with a plate reader. Mean (SE) was calculated for viable cell counts and gingipain activity, and Wilcoxon rank-sum test was used to test for significant differences. Results: The counts of viable P gingivalis cells in the control group increased as incubation time progressed for 12, 24, 48, and 72 hours; similar results were observed in the low-concentration HkEf group. In the high-concentration HkEf group, the increase in the viable cell count was significantly inhibited compared with that of the control group. Furthermore, gingipain activity in the low- and high-concentration HkEf groups was significantly inhibited over time compared with that of the control group. Although the pH of the culture solution tended to decrease in the high-concentration HkEf group, it was not considered to have affected the growth of P gingivalis. Conclusions: HkEf exhibits inhibitory effects on the growth of P gingivalis and gingipain activity

    Stimulus-dependent regulation of nuclear Ca2+ signaling in cardiomyocytes: a role of neuronal calcium sensor-1.

    No full text
    In cardiomyocytes, intracellular calcium (Ca2+) transients are elicited by electrical and receptor stimulations, leading to muscle contraction and gene expression, respectively. Although such elevations of Ca2+levels ([Ca2+]) also occur in the nucleus, the precise mechanism of nuclear [Ca2+] regulation during different kinds of stimuli, and its relationship with cytoplasmic [Ca2+] regulation are not fully understood. To address these issues, we used a new region-specific fluorescent protein-based Ca2+ indicator, GECO, together with the conventional probe Fluo-4 AM. We confirmed that nuclear Ca2+ transients were elicited by both electrical and receptor stimulations in neonatal mouse ventricular myocytes. Kinetic analysis revealed that electrical stimulation-elicited nuclear Ca2+ transients are slower than cytoplasmic Ca2+ transients, and chelating cytoplasmic Ca2+ abolished nuclear Ca2+ transients, suggesting that nuclear Ca2+ are mainly derived from the cytoplasm during electrical stimulation. On the other hand, receptor stimulation such as with insulin-like growth factor-1 (IGF-1) preferentially increased nuclear [Ca2+] compared to cytoplasmic [Ca2+]. Experiments using inhibitors revealed that electrical and receptor stimulation-elicited Ca2+ transients were mainly mediated by ryanodine receptors and inositol 1,4,5-trisphosphate receptors (IP3Rs), respectively, suggesting different mechanisms for the two signals. Furthermore, IGF-1-elicited nuclear Ca2+ transient amplitude was significantly lower in myocytes lacking neuronal Ca2+ sensor-1 (NCS-1), a Ca2+ binding protein implicated in IP3R-mediated pathway in the heart. Moreover, IGF-1 strengthened the interaction between NCS-1 and IP3R. These results suggest a novel mechanism for receptor stimulation-induced nuclear [Ca2+] regulation mediated by IP3R and NCS-1 that may further fine-tune cardiac Ca2+ signal regulation
    corecore