Oral Presentation Award Winner

β3 Adrenergic Receptors in the Sinoatrial Node for Heart Rate Regulation

Shu Nakao,^{1,2} Kazuki Yanagisawa,¹ Tomoe Ueyama,¹ Koji Hasegawa² and Teruhisa Kawamura^{1,2}

1. Ritsumeikan University, Kusatsu, Japan; 2. Kyoto Medical Center, Kyoto, Fushimi-ku, Japan

Citation: European Cardiology Review 2021;16:e58. DOI: https://doi.org/10.15420/ecr.2021.16.PO2

Open Access: This work is open access under the CC-BY-NC 4.0 License which allows users to copy, redistribute and make derivative works for non-commercial purposes, provided the original work is cited correctly.

Objectives: β 1-adrenergic receptor (AR) signalling has a positive chronotropic effect in the heart. However, the role of β 3-AR, a minor cardiac β -AR isoform, in heart rate regulation remains unknown. β 3-ARs are highly expressed in adipose tissue, and promote energy expenditure. We here investigated whether β 3-ARs are expressed in the sinoatrial node (SAN), the primary pacemaking site, and regulate heart rate in mice.

Materials and methods: Adult C57BL/6 male mice were used for electrocardiogram recording under mild anaesthesia with isoflurane inhalation with or without β -AR inhibitors. The right atrial wall including the SAN region was dissected and subjected to electrophysiological recording, immunolabelling and gene expression analysis.

Results: mRNA expression analysis revealed that β 3-AR transcripts were

detected at a modest level in the SAN region. Immunolabelling revealed that β 3-ARs were expressed at low levels in SAN myocytes and at high levels in adipocytes and nerve fibres. In electrocardiogram recordings *in vivo*, the heart rate was decreased by a β 1-AR inhibitor. A subsequent injection of a specific β 3-AR inhibitor further reduced the heart rate and prolonged PR intervals. In electrophysiological experiment *in vitro*, SAN-driving intrinsic heart rate was significantly increased by a specific β 3-AR agonist.

Conclusion: There may be direct and indirect mechanisms linking β 3-ARs to impulse generation and propagation. This mechanism possibly presents in SAN myocytes as well as the adjacent adipose tissue, which may provide energy for action potential firing.