33 research outputs found

    Robust Object-Based Watermarking Using SURF Feature Matching and DFT Domain

    Get PDF
    In this paper we propose a robust object-based watermarking method, in which the watermark is embedded into the middle frequencies band of the Discrete Fourier Transform (DFT) magnitude of the selected object region, altogether with the Speeded Up Robust Feature (SURF) algorithm to allow the correct watermark detection, even if the watermarked image has been distorted. To recognize the selected object region after geometric distortions, during the embedding process the SURF features are estimated and stored in advance to be used during the detection process. In the detection stage, the SURF features of the distorted image are estimated and match them with the stored ones. From the matching result, SURF features are used to compute the Affine-transformation parameters and the object region is recovered. The quality of the watermarked image is measured using the Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM) and the Visual Information Fidelity (VIF). The experimental results show the proposed method provides robustness against several geometric distortions, signal processing operations and combined distortions. The receiver operating characteristics (ROC) curves also show the desirable detection performance of the proposed method. The comparison with a previously reported methods based on different techniques is also provided

    Copyright Protection of Color Imaging Using Robust-Encoded Watermarking

    Get PDF
    In this paper we present a robust-encoded watermarking method applied to color images for copyright protection, which presents robustness against several geometric and signal processing distortions. Trade-off between payload, robustness and imperceptibility is a very important aspect which has to be considered when a watermark algorithm is designed. In our proposed scheme, previously to be embedded into the image, the watermark signal is encoded using a convolutional encoder, which can perform forward error correction achieving better robustness performance. Then, the embedding process is carried out through the discrete cosine transform domain (DCT) of an image using the image normalization technique to accomplish robustness against geometric and signal processing distortions. The embedded watermark coded bits are extracted and decoded using the Viterbi algorithm. In order to determine the presence or absence of the watermark into the image we compute the bit error rate (BER) between the recovered and the original watermark data sequence. The quality of the watermarked image is measured using the well-known indices: Peak Signal to Noise Ratio (PSNR), Visual Information Fidelity (VIF) and Structural Similarity Index (SSIM). The color difference between the watermarked and original images is obtained by using the Normalized Color Difference (NCD) measure. The experimental results show that the proposed method provides good performance in terms of imperceptibility and robustness. The comparison among the proposed and previously reported methods based on different techniques is also provided

    Substitution for Cu in the electron-doped infinite-layer superconductor Sr0.9La0.1CuO2, Ni reduces Tc much faster than Zn

    Full text link
    We report on the effect of substitution for Cu on Tc of electron-doped infinite-layer superconductors Sr0.9La0.1Cu1-xRxO2, R = Zn and Ni. We found that Tc was nearly constant until x = 0.03 for R = Zn, while superconductivity was nearly suppressed for x = 0.02 with dTc/dx = 20 K/% for R = Ni. This behavior is very similar to that of conventional superconductors. These findings are discussed in terms of the superconducting gap symmetry in the cuprate superconductors including another electron-doped superconductor, (Nd,Ce)2CuO4-y.Comment: 5 pages and 2 EPS figures, [email protected] for material reques

    Gelsolin dysfunction causes photoreceptor loss in induced pluripotent cell and animal retinitis pigmentosa models

    Get PDF
    Mutations in the Retinitis Pigmentosa GTPase Regulator (RPGR) cause X-linked RP (XLRP), an untreatable, inherited retinal dystrophy that leads to premature blindness. RPGR localises to the photoreceptor connecting cilium where its function remains unknown. Here we show, using murine and human induced pluripotent stem cell models, that RPGR interacts with and activates the actin-severing protein gelsolin, and that gelsolin regulates actin disassembly in the connecting cilium, thus facilitating rhodopsin transport to photoreceptor outer segments. Disease-causing RPGR mutations perturb this RPGR-gelsolin interaction, compromising gelsolin activation. Both RPGR and Gelsolin knockout mice show abnormalities of actin polymerisation and mislocalisation of rhodopsin in photoreceptors. These findings reveal a clinically-significant role for RPGR in the activation of gelsolin, without which abnormalities in actin polymerisation in the photoreceptor connecting cilia cause rhodopsin mislocalisation and eventual retinal degeneration in XLRP.Mutations in the Retinitis Pigmentosa GTPase Regulator (RPGR) cause retinal dystrophy, but how this arises at a molecular level is unclear. Here, the authors show in induced pluripotent stem cells and mouse knockouts that RPGR mediates actin dynamics in photoreceptors via the actin-severing protein, gelsolin

    Countering the pooled triangle test for PRNU-based camera identification

    No full text
    We analyze the security of the pooled triangle test in [1] against Counter-Forensic attacks. First, a new attack is proposed, relying on a block-wise variance-based estimation of the fingerprint. The new attack permits to reduce greatly the accuracy of the pooled test, thus outperforming state of the art methods which are in general effective only against the single-image version of the test [1]. Then, a randomized version of the newly proposed attack is introduced to increase its security. The randomized version of the attack maintains good performance even when an attack-aware version of the pooled test is applied. Extensive experiments are carried out in a very general setting, also permitting to show that the performance of the pooled triangle test in the presence of attacks greatly depend on the test parameters, and in particular, on the relationship between the number of images used to run the test and the cardinality of the set of images used for the attack

    Digital Color Images Ownership Authentication via Efficient and Robust Watermarking in a Hybrid Domain

    Get PDF
    We propose an efficient, imperceptible and highly robust digital watermarking scheme applied to color images for ownership authentication purposes. A hybrid domain for embedding the same watermark is used in this algorithm, which is composed by a couple of watermarking techniques based on spread spectrum and frequency domain. The visual quality is measured by three metrics called Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM) and Visual Information Fidelity (VIF). The difference color between the original and watermarked image is computed using the Normalized Color Difference (NCD) measure. Experimentation shows that the proposed method provides high robustness against several geometric distortions including large image cropping, removal attacks, image replacement and affine transformation; signal processing operations including several image filtering, JPEG lossy compression, visual watermark added and noisy image, as well as combined distortions between all of them. Also, we present a comparison with some previously published methods which reported outstanding results and have a similar purpose that our proposal, i.e. they are focused in robust watermarking
    corecore