14,905 research outputs found

    Influence of lamination orientation and stacking on magnetic characteristics of grain-oriented silicon steel laminations

    Get PDF
    Analytical and experimental investigations have been carried out upon the behaviour of flux in laminations, where the rolling directions of adjacent sheets are reversed. The paper clarifies the mechanism of the greatly different magnetic characteristics between such laminations and usual ones, where the rolling directions of adjacent sheets are coincident.</p

    Giant nonlinear conduction and thyristor-like negative derivative resistance in BaIrO3 single crystals

    Full text link
    We synthesized single-crystalline samples of monoclinic BaIrO3 using a molten flux method, and measured their magnetization, resistivity, Seebeck coefficient and nonlinear voltage-current characteristics. The magnetization rapidly increases below a ferromagnetic transition temperature TC of 180 K, where the resistivity concomitantly shows a hump-type anomaly, followed by a sharp increase below 30 K. The Seebeck coefficient suddenly increases below TC, and shows linear temperature dependence below 50 K. A most striking feature of this compound is that the anomalously giant nonlinear conduction is observed below 30 K, where a small current density of 20 A/cm2 dramatically suppresses the sharp increase in resistivity to induce a metallic conduction down to 4 K.Comment: 10 pages, 4 figures Submitted to Physical Review Letter

    Drude Weight of the Two-Dimensional Hubbard Model -- Reexamination of Finite-Size Effect in Exact Diagonalization Study --

    Full text link
    The Drude weight of the Hubbard model on the two-dimensional square lattice is studied by the exact diagonalizations applied to clusters up to 20 sites. We carefully examine finite-size effects by consideration of the appropriate shapes of clusters and the appropriate boundary condition beyond the imitation of employing only the simple periodic boundary condition. We successfully capture the behavior of the Drude weight that is proportional to the squared hole doping concentration. Our present result gives a consistent understanding of the transition between the Mott insulator and doped metals. We also find, in the frequency dependence of the optical conductivity, that the mid-gap incoherent part emerges more quickly than the coherent part and rather insensitive to the doping concentration in accordance with the scaling of the Drude weight.Comment: 9 pages with 10 figures and 1 table. accepted in J. Phys. Soc. Jp

    ^{75}As NMR study of the growth of paramagnetic-metal domains due to electron doping near the superconducting phase in LaFeAsO_{1-x}F_{x}

    Get PDF
    We studied the electric and magnetic behavior near the phase boundary between antiferromagnetic (AF) and superconducting (SC) phases for a prototype of high-T_c pnictides LaFeAsO_{1-x}F_{x} by using nuclear magnetic resonance, and found that paramagnetic-metal (PM) domains segregate from AF domains. PM domains grow in size with increasing electron doping level and are accompanied by the onset of superconductivity, and thus application of pressure or increasing the doping level causes superconductivity. The existence of PM domains cannot be explained by the existing paradigm that focuses only on the relationship between superconductivity and antiferromagnetism. Based on orbital fluctuation theory, the existence of PM domains is evidence of the ferroquadrupole state.Comment: 5 figure

    Axisymmetric Magnetorotational Instability in Viscous Accretion Disks

    Full text link
    Axisymmetric magnetorotational instability (MRI) in viscous accretion disks is investigated by linear analysis and two-dimensional nonlinear simulations. The linear growth of the viscous MRI is characterized by the Reynolds number defined as RMRIvA2/νΩR_{\rm MRI} \equiv v_A^2/\nu\Omega , where vAv_A is the Alfv{\'e}n velocity, ν\nu is the kinematic viscosity, and Ω\Omega is the angular velocity of the disk. Although the linear growth rate is suppressed considerably as the Reynolds number decreases, the nonlinear behavior is found to be almost independent of RMRIR_{\rm MRI}. At the nonlinear evolutionary stage, a two-channel flow continues growing and the Maxwell stress increases until the end of calculations even though the Reynolds number is much smaller than unity. A large portion of the injected energy to the system is converted to the magnetic energy. The gain rate of the thermal energy, on the other hand, is found to be much larger than the viscous heating rate. Nonlinear behavior of the MRI in the viscous regime and its difference from that in the highly resistive regime can be explained schematically by using the characteristics of the linear dispersion relation. Applying our results to the case with both the viscosity and resistivity, it is anticipated that the critical value of the Lundquist number SMRIvA2/ηΩS_{\rm MRI} \equiv v_A^2/\eta\Omega for active turbulence depends on the magnetic Prandtl number SMRI,cPm1/2S_{{\rm MRI},c} \propto Pm^{1/2} in the regime of Pm1Pm \gg 1 and remains constant when Pm1Pm \ll 1, where PmSMRI/RMRI=ν/ηPm \equiv S_{\rm MRI}/R_{\rm MRI} = \nu/\eta and η\eta is the magnetic diffusivity.Comment: Accepted for publication in ApJ -- 18 pages, 9 figures, 1 tabl

    The adiabatic evolution of orbital parameters in the Kerr spacetime

    Full text link
    We investigate the adiabatic orbital evolution of a point particle in the Kerr spacetime due to the emission of gravitational waves. In the case that the timescale of the orbital evolution is enough smaller than the typical timescale of orbits, the evolution of orbits is characterized by the change rates of three constants of motion, the energy EE, the azimuthal angular momentum LL, and the Carter constant QQ. For EE and LL, we can evaluate their change rates from the fluxes of the energy and the angular momentum at infinity and on the event horizon according to the balance argument. On the other hand, for the Carter constant, we cannot use the balance argument because we do not know the conserved current associated with it. %and the corresponding conservation law. Recently, Mino proposed a new method of evaluating the averaged change rate of the Carter constant by using the radiative field. In our previous paper we developed a simplified scheme for practical evaluation of the evolution of the Carter constant based on the Mino's proposal. In this paper we describe our scheme in more detail, and derive explicit analytic formulae for the change rates of the energy, the angular momentum and the Carter constant.Comment: 34 pages, no figur

    An improved method for determining the DC magnetization curve using a ring specimen

    Get PDF
    When the DC magnetization curve (B-H) of nonoriented material is measured in a ring specimen, there is an intrinsic error due to the assumption that the mean magnetic path length is equal to the mean geometric path length. A novel method for determining the B-H curve accurately is proposed. The validity of the method is verified by experiments</p

    Compressional properties of nuclear matter in the relativistic mean field theory with the excluded volume effects

    Get PDF
    Compressional properties of nuclear matter are studied by using the mean field theory with the excluded volume effects of the nucleons. It is found that the excluded volume effects make it possible to fit the empirical data of the Coulomb coefficient KcK_{c} of nucleus incompressibility, even if the volume coefficient KK is small(150\sim 150MeV). However, the symmetry properties favor K=300±50K=300\pm 50MeV as in the cases of the mean field theory of point-like nucleons.Comment: PACS numbers, 21.65.+f, 21.30.+

    Antiproton Production in p+d Reaction at Subthreshold Energies

    Get PDF
    An enhancement of antiprotons produced in p+d reaction in comparison with ones in p+p elementary reaction is investigated. In the neighborhood of subthreshold energy the enhancement is caused by the difference of available energies for antiproton production. The cross section in p+d reaction, on the other hand, becomes just twice of the one in elementary p+p reaction at the incident energy far from the threshold energy when non-nucleonic components in deuteron target are not considered.Comment: LaTeX,7 pages with 5 eps figure
    corecore