12,017 research outputs found

    Quark condensate in nuclear matter based on Nuclear Schwinger-Dyson formalism

    Full text link
    The effects of higher order corrections of ring diagrams for the quark condensate are studied by using the bare vertex Nuclear Schwinger Dyson formalism based on σ\sigma-ω\omega model. At the high density the quark condensate is reduced by the higher order contribution of ring diagrams more than the mean field theory or the Hartree-Fock

    Design study for LANDSAT-D attitude control system

    Get PDF
    The gimballed Ku-band antenna system for communication with TDRS was studied. By means of an error analysis it was demonstrated that the antenna cannot be open loop pointed to TDRS by an onboard programmer, but that an autotrack system was required. After some tradeoffs, a two-axis, azimuth-elevation type gimbal configuration was recommended for the antenna. It is shown that gimbal lock only occurs when LANDSAT-D is over water where a temporary loss of the communication link to TDRS is of no consequence. A preliminary gimbal control system design is also presented. A digital computer program was written that computes antenna gimbal angle profiles, assesses percent antenna beam interference with the solar array, and determines whether the spacecraft is over land or water, a lighted earth or a dark earth, and whether the spacecraft is in eclipse

    Effective meson masses, effective meson-nucleon couplings and neutron star radii

    Full text link
    Using the generalized mean field theory, we have studied the relation among the effective meson masses, the effective meson-nucleon couplings and the equation of state (EOS) in asymmetric nuclear matter. If the effective omega-meson mass becomes smaller at high density, the EOS becomes stiffer. However, if we require that the omega-meson mean field is proportional to the baryon density, the effective omega-nucleon coupling automatically becomes smaller at the same time as the effective omega-meson mass becomes smaller. Consequently, the EOS becomes softer. A similar relation is found for the effective rho-meson mass and the effective rho-nucleon coupling. We have also studied the relation among the effective meson masses, the effective meson-nucleon couplings and a radius R of a neutron star. The R depends somewhat on the value of the effective omega-meson mass and the effective omega-nucleon coupling.Comment: 29pages, 24 figure

    Pattern-recalling processes in quantum Hopfield networks far from saturation

    Get PDF
    As a mathematical model of associative memories, the Hopfield model was now well-established and a lot of studies to reveal the pattern-recalling process have been done from various different approaches. As well-known, a single neuron is itself an uncertain, noisy unit with a finite unnegligible error in the input-output relation. To model the situation artificially, a kind of 'heat bath' that surrounds neurons is introduced. The heat bath, which is a source of noise, is specified by the 'temperature'. Several studies concerning the pattern-recalling processes of the Hopfield model governed by the Glauber-dynamics at finite temperature were already reported. However, we might extend the 'thermal noise' to the quantum-mechanical variant. In this paper, in terms of the stochastic process of quantum-mechanical Markov chain Monte Carlo method (the quantum MCMC), we analytically derive macroscopically deterministic equations of order parameters such as 'overlap' in a quantum-mechanical variant of the Hopfield neural networks (let us call "quantum Hopfield model" or "quantum Hopfield networks"). For the case in which non-extensive number pp of patterns are embedded via asymmetric Hebbian connections, namely, p/N0p/N \to 0 for the number of neuron NN \to \infty ('far from saturation'), we evaluate the recalling processes for one of the built-in patterns under the influence of quantum-mechanical noise.Comment: 10 pages, 3 figures, using jpconf.cls, Proc. of Statphys-Kolkata VI

    Magnetic properties of quantum Heisenberg ferromagnets with long-range interactions

    Full text link
    Quantum Heisenberg ferromagnets with long-range interactions decayin as 1/rp1/r^p in one and two dimensions are investigated by means of the Green's function method. It is shown that there exists a finite-temperature phase transition in the region d<p<2dd<p<2 d for the dd-dimensional case and that no transitions at any finite temperature exist for p2dp\ge 2 d; the critical temperature is also estimated. We study the magnetic properties of this model. We calculate the critical exponents' dependence on pp; these exponents also satisfy a scaling relation. Some of the results were also found using the modified spin-wave theory and are in remarkable agreement with each other.Comment: 13 pages(LaTeX REVTeX), 2 figures not included (postscript files available on request), submitted to Phys.Rev.

    Solitonic approach to the dimerization problem in correlated one-dimensional systems

    Full text link
    Using exact diagonalizations we consider self-consistently the lattice distortions in odd Peierls-Hubbard and spin-Peierls periodic rings in the adiabatic harmonic approximation. From the tails of the inherent spin soliton the dimerization d_\infty of regular even rings is found by extrapolations to infinite ring lengths. Considering a wide region of electron-electron onsite interaction values U>0 compared with the band width 4t_0 at intermediately strong electron-phonon interaction g, known relationships obtained by other methods are reproduced and/or refined within one unified approach: such as the maximum of d_\infty at U \simeq 3 t_0 for g \simeq 0.5 and its shift to zero for g \to g_c \approx 0.7. The hyperbolic tangent shape of the spin soliton is retained for any U and g <~ 0.6. In the spin-Peierls limit the d_\infty are found to be in agreement with results of DMRG computations.Comment: 4 pages, 4 figures, Physical Review B, Rapid Communications, v. 56 (1997) accepte

    N N bar,Delta bar N, Delta N bar excitation for the pion propagator in nuclear matter

    Full text link
    The particle-hole and Delta -hole excitations are well-known elementary excitation modes for the pion propagator in nuclear matter. But, the excitation also involves antiparticles, namely, nucleon-antinucleon, anti-Delta-nucleon and Delta-antinucleon excitations. These are important for high-energy momentum as well, and have not been studied before, to our knowledge. In this paper, we give both the formulas and the numerical calculations for the real and the imaginary parts of these excitations.Comment: Latex, 3 eps file

    Three-body equations of motion in successive post-Newtonian approximations

    Get PDF
    There are periodic solutions to the equal-mass three-body (and N-body) problem in Newtonian gravity. The figure-eight solution is one of them. In this paper, we discuss its solution in the first and second post-Newtonian approximations to General Relativity. To do so we derive the canonical equations of motion in the ADM gauge from the three-body Hamiltonian. We then integrate those equations numerically, showing that quantities such as the energy, linear and angular momenta are conserved down to numerical error. We also study the scaling of the initial parameters with the physical size of the triple system. In this way we can assess when general relativistic results are important and we determine that this occur for distances of the order of 100M, with M the total mass of the system. For distances much closer than those, presumably the system would completely collapse due to gravitational radiation. This sets up a natural cut-off to Newtonian N-body simulations. The method can also be used to dynamically provide initial parameters for subsequent full nonlinear numerical simulations.Comment: 8 pages, 9 figure

    Radial Distribution of Dust Grains Around HR 4796A

    Get PDF
    We present high-dynamic-range images of circumstellar dust around HR 4796A that were obtained with MIRLIN at the Keck II telescope at lambda = 7.9, 10.3, 12.5 and 24.5 um. We also present a new continuum measurement at 350 um obtained at the Caltech Submillimeter Observatory. Emission is resolved in Keck images at 12.5 and 24.5 um with PSF FWHM's of 0.37" and 0.55", respectively, and confirms the presence of an outer ring centered at 70 AU. Unresolved excess infrared emission is also detected at the stellar position and must originate well within 13 AU of the star. A model of dust emission fit to flux densities at 12.5, 20.8, and 24.5 um indicates dust grains are located 4(+3/-2) AU from the star with effective size, 28+/-6 um, and an associated temperature of 260+/-40 K. We simulate all extant data with a simple model of exozodiacal dust and an outer exo-Kuiper ring. A two-component outer ring is necessary to fit both Keck thermal infrared and HST scattered-light images. Bayesian parameter estimates yield a total cross-sectional area of 0.055 AU^2 for grains roughly 4 AU from the star and an outer-dust disk composed of a narrow large-grain ring embedded within a wider ring of smaller grains. The narrow ring is 14+/-1 AU wide with inner radius 66+/-1 AU and total cross-sectional area 245 AU^2. The outer ring is 80+/-15 AU wide with inner radius 45+/-5 AU and total cross-sectional area 90 AU^2. Dust grains in the narrow ring are about 10 times larger and have lower albedos than those in the wider ring. These properties are consistent with a picture in which radiation pressure dominates the dispersal of an exo-Kuiper belt.Comment: Accepted by Astrophysical Journal (Part1) on September 9, 2004. 13 pages, 10 figures, 2 table

    Diquark Bose-Einstein condensation

    Full text link
    Bose-Einstein condensation (BEC) of composite diquarks in quark matter (the color superconductor phase) is discussed using the quasi-chemical equilibrium theory at a relatively low density region near the deconfinement phase transition, where dynamical quark-pair fluctuations are assumed to be described as bosonic degrees of freedom (diquarks). A general formulation is given for the diquark formation and particle-antiparticle pair-creation processes in the relativistic flamework, and some interesting properties are shown, which are characteristic for the relativistic many-body system. Behaviors of transition temperature and phase diagram of the quark-diquark matter are generally presented in model parameter space, and their asymptotic behaviors are also discussed. As an application to the color superconductivity, the transition temperatures and the quark and diquark density profiles are calculated in case with constituent/current quarks, where the diquark is in bound/resonant state. We obtained TC6080T_C \sim 60-80 MeV for constituent quarks and TC130T_C \sim 130 MeV for current quarks at a moderate density (ρb3ρ0\rho_b \sim 3 \rho_0). The method is also developed to include interdiquark interactions into the quasi-chemical equilibrium theory within a mean-field approximation, and it is found that a possible repulsive diquark-diquark interaction lowers the transition temperature by nearly 50%.Comment: 21 pages, 23 figure
    corecore