12,017 research outputs found
Quark condensate in nuclear matter based on Nuclear Schwinger-Dyson formalism
The effects of higher order corrections of ring diagrams for the quark
condensate are studied by using the bare vertex Nuclear Schwinger Dyson
formalism based on - model. At the high density the quark
condensate is reduced by the higher order contribution of ring diagrams more
than the mean field theory or the Hartree-Fock
Design study for LANDSAT-D attitude control system
The gimballed Ku-band antenna system for communication with TDRS was studied. By means of an error analysis it was demonstrated that the antenna cannot be open loop pointed to TDRS by an onboard programmer, but that an autotrack system was required. After some tradeoffs, a two-axis, azimuth-elevation type gimbal configuration was recommended for the antenna. It is shown that gimbal lock only occurs when LANDSAT-D is over water where a temporary loss of the communication link to TDRS is of no consequence. A preliminary gimbal control system design is also presented. A digital computer program was written that computes antenna gimbal angle profiles, assesses percent antenna beam interference with the solar array, and determines whether the spacecraft is over land or water, a lighted earth or a dark earth, and whether the spacecraft is in eclipse
Effective meson masses, effective meson-nucleon couplings and neutron star radii
Using the generalized mean field theory, we have studied the relation among
the effective meson masses, the effective meson-nucleon couplings and the
equation of state (EOS) in asymmetric nuclear matter. If the effective
omega-meson mass becomes smaller at high density, the EOS becomes stiffer.
However, if we require that the omega-meson mean field is proportional to the
baryon density, the effective omega-nucleon coupling automatically becomes
smaller at the same time as the effective omega-meson mass becomes smaller.
Consequently, the EOS becomes softer. A similar relation is found for the
effective rho-meson mass and the effective rho-nucleon coupling. We have also
studied the relation among the effective meson masses, the effective
meson-nucleon couplings and a radius R of a neutron star. The R depends
somewhat on the value of the effective omega-meson mass and the effective
omega-nucleon coupling.Comment: 29pages, 24 figure
Pattern-recalling processes in quantum Hopfield networks far from saturation
As a mathematical model of associative memories, the Hopfield model was now
well-established and a lot of studies to reveal the pattern-recalling process
have been done from various different approaches. As well-known, a single
neuron is itself an uncertain, noisy unit with a finite unnegligible error in
the input-output relation. To model the situation artificially, a kind of 'heat
bath' that surrounds neurons is introduced. The heat bath, which is a source of
noise, is specified by the 'temperature'. Several studies concerning the
pattern-recalling processes of the Hopfield model governed by the
Glauber-dynamics at finite temperature were already reported. However, we might
extend the 'thermal noise' to the quantum-mechanical variant. In this paper, in
terms of the stochastic process of quantum-mechanical Markov chain Monte Carlo
method (the quantum MCMC), we analytically derive macroscopically deterministic
equations of order parameters such as 'overlap' in a quantum-mechanical variant
of the Hopfield neural networks (let us call "quantum Hopfield model" or
"quantum Hopfield networks"). For the case in which non-extensive number of
patterns are embedded via asymmetric Hebbian connections, namely,
for the number of neuron ('far from saturation'), we evaluate
the recalling processes for one of the built-in patterns under the influence of
quantum-mechanical noise.Comment: 10 pages, 3 figures, using jpconf.cls, Proc. of Statphys-Kolkata VI
Magnetic properties of quantum Heisenberg ferromagnets with long-range interactions
Quantum Heisenberg ferromagnets with long-range interactions decayin as
in one and two dimensions are investigated by means of the Green's
function method. It is shown that there exists a finite-temperature phase
transition in the region for the -dimensional case and that no
transitions at any finite temperature exist for ; the critical
temperature is also estimated. We study the magnetic properties of this model.
We calculate the critical exponents' dependence on ; these exponents also
satisfy a scaling relation. Some of the results were also found using the
modified spin-wave theory and are in remarkable agreement with each other.Comment: 13 pages(LaTeX REVTeX), 2 figures not included (postscript files
available on request), submitted to Phys.Rev.
Solitonic approach to the dimerization problem in correlated one-dimensional systems
Using exact diagonalizations we consider self-consistently the lattice
distortions in odd Peierls-Hubbard and spin-Peierls periodic rings in the
adiabatic harmonic approximation. From the tails of the inherent spin soliton
the dimerization d_\infty of regular even rings is found by extrapolations to
infinite ring lengths. Considering a wide region of electron-electron onsite
interaction values U>0 compared with the band width 4t_0 at intermediately
strong electron-phonon interaction g, known relationships obtained by other
methods are reproduced and/or refined within one unified approach: such as the
maximum of d_\infty at U \simeq 3 t_0 for g \simeq 0.5 and its shift to zero
for g \to g_c \approx 0.7. The hyperbolic tangent shape of the spin soliton is
retained for any U and g <~ 0.6. In the spin-Peierls limit the d_\infty are
found to be in agreement with results of DMRG computations.Comment: 4 pages, 4 figures, Physical Review B, Rapid Communications, v. 56
(1997) accepte
N N bar,Delta bar N, Delta N bar excitation for the pion propagator in nuclear matter
The particle-hole and Delta -hole excitations are well-known elementary
excitation modes for the pion propagator in nuclear matter. But, the excitation
also involves antiparticles, namely, nucleon-antinucleon, anti-Delta-nucleon
and Delta-antinucleon excitations. These are important for high-energy momentum
as well, and have not been studied before, to our knowledge. In this paper, we
give both the formulas and the numerical calculations for the real and the
imaginary parts of these excitations.Comment: Latex, 3 eps file
Three-body equations of motion in successive post-Newtonian approximations
There are periodic solutions to the equal-mass three-body (and N-body)
problem in Newtonian gravity. The figure-eight solution is one of them. In this
paper, we discuss its solution in the first and second post-Newtonian
approximations to General Relativity. To do so we derive the canonical
equations of motion in the ADM gauge from the three-body Hamiltonian. We then
integrate those equations numerically, showing that quantities such as the
energy, linear and angular momenta are conserved down to numerical error. We
also study the scaling of the initial parameters with the physical size of the
triple system. In this way we can assess when general relativistic results are
important and we determine that this occur for distances of the order of 100M,
with M the total mass of the system. For distances much closer than those,
presumably the system would completely collapse due to gravitational radiation.
This sets up a natural cut-off to Newtonian N-body simulations. The method can
also be used to dynamically provide initial parameters for subsequent full
nonlinear numerical simulations.Comment: 8 pages, 9 figure
Radial Distribution of Dust Grains Around HR 4796A
We present high-dynamic-range images of circumstellar dust around HR 4796A
that were obtained with MIRLIN at the Keck II telescope at lambda = 7.9, 10.3,
12.5 and 24.5 um. We also present a new continuum measurement at 350 um
obtained at the Caltech Submillimeter Observatory. Emission is resolved in Keck
images at 12.5 and 24.5 um with PSF FWHM's of 0.37" and 0.55", respectively,
and confirms the presence of an outer ring centered at 70 AU. Unresolved excess
infrared emission is also detected at the stellar position and must originate
well within 13 AU of the star. A model of dust emission fit to flux densities
at 12.5, 20.8, and 24.5 um indicates dust grains are located 4(+3/-2) AU from
the star with effective size, 28+/-6 um, and an associated temperature of
260+/-40 K.
We simulate all extant data with a simple model of exozodiacal dust and an
outer exo-Kuiper ring. A two-component outer ring is necessary to fit both Keck
thermal infrared and HST scattered-light images. Bayesian parameter estimates
yield a total cross-sectional area of 0.055 AU^2 for grains roughly 4 AU from
the star and an outer-dust disk composed of a narrow large-grain ring embedded
within a wider ring of smaller grains. The narrow ring is 14+/-1 AU wide with
inner radius 66+/-1 AU and total cross-sectional area 245 AU^2. The outer ring
is 80+/-15 AU wide with inner radius 45+/-5 AU and total cross-sectional area
90 AU^2. Dust grains in the narrow ring are about 10 times larger and have
lower albedos than those in the wider ring. These properties are consistent
with a picture in which radiation pressure dominates the dispersal of an
exo-Kuiper belt.Comment: Accepted by Astrophysical Journal (Part1) on September 9, 2004. 13
pages, 10 figures, 2 table
Diquark Bose-Einstein condensation
Bose-Einstein condensation (BEC) of composite diquarks in quark matter (the
color superconductor phase) is discussed using the quasi-chemical equilibrium
theory at a relatively low density region near the deconfinement phase
transition, where dynamical quark-pair fluctuations are assumed to be described
as bosonic degrees of freedom (diquarks). A general formulation is given for
the diquark formation and particle-antiparticle pair-creation processes in the
relativistic flamework, and some interesting properties are shown, which are
characteristic for the relativistic many-body system. Behaviors of transition
temperature and phase diagram of the quark-diquark matter are generally
presented in model parameter space, and their asymptotic behaviors are also
discussed. As an application to the color superconductivity, the transition
temperatures and the quark and diquark density profiles are calculated in case
with constituent/current quarks, where the diquark is in bound/resonant state.
We obtained MeV for constituent quarks and MeV
for current quarks at a moderate density (). The method
is also developed to include interdiquark interactions into the quasi-chemical
equilibrium theory within a mean-field approximation, and it is found that a
possible repulsive diquark-diquark interaction lowers the transition
temperature by nearly 50%.Comment: 21 pages, 23 figure
- …